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Differences from Previous Years

Python introduced, like World Finals.
Both Python 2 and 3.

Order of problems shuffled.
The first three problems are the easiest,
but others are in a random order.



Estimated Order of Difficulty

Coding A B C I G J E F H K D

Analysis A B C G I F E J K D H

Hardest →← Easiest



Predicted # of Correct Answers

A B C D E F G H I J K

Average 49.85 48.46 42.23 4.15 12.92 22.54 22.23 3.85 30.23 14.31 6.77

Std. Dev. 0.36 1.91 6.27 2.90 5.50 6.79 8.29 4.87 5.65 8.40 3.38
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Estimated vs. Actual

A B C D E F G H I J K

Estimated 49.85 48.46 42.23 4.15 12.92 22.54 22.23 3.85 30.23 14.31 6.77

Actual 49 39 42 2 10 12 19 2 35 1 3
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# problems solved & # teams
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A: Secret of 
Chocolate Pole



Story
•Wendy makes poles of chocolate.

•DiffereŶt poles ŵaǇ haǀe differeŶt ͞side ǀieǁs.͟



Problem
CouŶt the Ŷuŵďer of possiďle distiŶĐt ͞side ǀieǁs.͟
Conditions:

• Pole consists of dark and white
chocolate, stacked alternately.

• Top and bottom are dark.

• Conditions on height

• dark block: 1 cm, k cm

•white block: 1 cm

• pole: ≤ l cm

≤ l
k

1

pole



Example

k = 3

l = 5

l = 5, k = 3 ⇒ answer = 6



Solution --- dynamic programming

1. Consider the number of side views of exactly n high, S(n)

2. Sum up S(n) for 0 ≤ n ≤ l

n-2

2

n-(k+1)

k+1

S(n-2) S(n-(k+1))S(n) =  +

For large n,



Special cases

1

k

S(1) =1  

2
k

S(2) = 0  

n k

S(n) = S(n-2)

if 2 < n < k  

Top should

be dark

n k

S(n) = S(n-2) + 1

if n = k

n
k

S(n) = S(n-2)

if n = k + 1  

S(n) =

S(n-2) +

S(n-(k+1))  

if n > k + 1

and, general case



Remaining Mystery:
The secret of chocolate poles

•Wendy was a spy

•She was developing a secret coding that uses the 
patterns of chocolate poles



Problem B:
Parallel Lines



Problem Summary
• Couple all the points into pairs

• Draw a connecting line between the points of each point pairs

• Count number of the parallel line pairs

• Answer the maximum number of the parallel line pairs

0 0 1

number of parallel line pairs



Couple all the points into pairs
• For example of 6 points, couple the points into pairs as follows.

Even for 16 points, 15x13x11x9x7x5x3x1=2027025

• DO NOT make permutations of all the points.  16! is TOO LARGE.

In this case of 6 points, calculation 

amount is 5x3x1=15

Second pair → 3 patterns

First pair → 5 patterns

Third pair → 1 patterns



Judge that two vectors are parallel
• For vectors     and     ,                       holds when      and       are parallel.       0|| 21 vv

1v 2v 2v1v

),,(

),,(

),,(

21212121212121

2222

1111

xyyxzxxzyzzyvv

zyxv

zyxv





• In this case, both of     and      are on XY-plane.        
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• So you can judge it by computing 02121  xyyx

1v 2v

← z component 



C: Medical 
Checkup



Problem:
• Students need to undergo checkups in order.

• The i-th student takes hi unit time to finish 

each checkup item.

• Find the items students are being checked up 

or waiting for at specified time.

Student 1Student 3 Student 2 Item 1 Item 2 Item 3

……



Solution:
Consider a time sequence diagram.

Item 1

Item 2

Item 3

St.1 St.2 St.3

St.1 St.2

St.1 St.2

St.3

St.3

Let’s Đall the i-th student is important if hk<hi for all k < i.

• Non-important student just follows a preceding student.

• Important student moves as if he/she ignores all others.

=> Student moves with uniform linear motion. O(n) time.



D: Making 
Perimeter of the 
Convex Hull 
Shortest



Problem: Given a set of planar points, 
make the convex hull of the set 
shortest by eliminating two points

The convex hull of a set of 

planar points is the 

smallest convex polygon 

that has all the points in 

the set on its edges or 

inside of it.



Finding the Convex Hull
Many algorithms have been proposed.

➢ Gift wrapping (Jarvis march): ܱሺ݊ℎሻ
➢ Graham scan: ܱሺ݊ log ݊ሻ
➢ AŶdreǁ’s algorithŵ: ܱሺ݊ log ݊ሻ
➢ Divide and conquer: ܱሺ݊ log ݊ሻ
➢ ChaŶ’s algorithŵ: ܱሺ݊ log ℎሻ݊ = # of points in the setℎ = # of vertices of the convex hullℎ may be as large as ݊ in this problem

Too slow as ݊ and ℎ
can be as large as ͳͲ5



Andrew’s Monotone Chain
To construct the upper half of the convex hull:

1. Sort the points with their � coordinates, start a left to right scan,  

naming two leftmost points ܲ and ܳ
2. If the next point ܴ is below the line ܲܳ, remember ܲ in the candidate 

point stack, let ܲ be ܳ, ܳ be ܴ, and repeat this step

3. If ܴ is above ܲܳ, ܳ cannot be a vertex of the convex hull;

let ܳ be ܲ, pop ܲ from the stack, and go back to 2

4. If no more point is left, stop

The lower half can be constructed similarly

ܲ ܳ ܴ ܲ ܳ ܴ ܳ ܴ ܲ ܳܲ ܴ



The Convex Hull can be Made Shorter
by Eliminating Some Points



Naïve Solution
➢ Consider all possible subsets after eliminating 

two of the points

➢ Find the convex hulls of each of them

This algorithm is too slow

➢ There are ݊ ݊ − ͳ /ʹ ways to eliminate two 
points

➢ Time complexity of ܱሺ݊ log ݊ሻ is required to find 
the convex hull of each of the subset

➢ The total time complexity will be ܱሺ݊ଷ log ݊ሻ



Eliminating Two Points, One by One

➢ One of the points is on the original convex hull;
Otherǁise, the ĐoŶǀeǆ hull ǁoŶ’t ĐhaŶge

➢ Elimination will result in a new convex hull

➢ Another point is to be eliminated from those on 
the new convex hull, which either was

• Already on the original convex hull, or

• Added newly because of the first elimination



Eliminating One Point

➢ Find the original convex hull: ܱሺ݊ log ݊ሻ
➢ Find the new convex hulls for when each point on 

the original convex hull is eliminated (ℎ cases)

➢ Candidate new vertices of the hull are those 
between two adjacent original hull points

➢ Each point is checked only twice, ʹ݊ times in total,
keeping the complexity of ܱሺ݊ log ݊ሻ



Eliminating a Newly Added Point

➢ Eliminating one of newly added points requires 
inspecting only those between two adjacent 
points on the new convex hull

➢ The total number of points investigated is ʹ݊
again, not affecting the total computational 
complexity of ܱሺ݊ log ݊ሻ



Eliminating Two Points on the 
Original Convex Hull

When two points are adjacent on the original hull

➢ Points to investigate are those between two hull 
points adjacent to the eliminated two

➢ Each point is checked only three times, and thus ͵݊ checks in total are made 



Eliminating Two Point on the 
Original Convex Hull (cont.)

When two points are not adjacent

➢The gains of shortening the convex hull 
perimeter are independent;
the sum of their gains is the net gain

➢But considering all the ℎሺℎ − ͵ሻ/ʹ ≅݊ଶ/ʹ ĐoŵďiŶatioŶs is too ĐostlǇ…



Finding the Best Combination 
without Too Much Cost

Keep the list of the best 4 candidate points: ܱሺℎሻ
➢ The #1 candidate can be adjacent to only 2 of the 

3 other points in the list

➢ If #1 is not adjacent to #2, the answer is #1+#2

➢ Otherwise, if #1 is not adjacent to #3, #1+#3

➢ If neither, #1 cannot be adjacent to #4;
The answer is the better of #1+#4 and #2+#3



Key Points

➢ Focusing on the differences may 
drastically reduce the computational 
complexity

➢ Take all possibilities into consideration



E: Black or White



Problem Summary
Paint a row of bricks into desired colors
The number of bricks painted in one stroke is at most ݇
Calculate the minimum number of strokesͳ ൑ ݇ ൑ ݊ ൑ 5ͲͲͲͲͲ



Focus on the last brick
If the initial color of the last brick is the same as the desired color, we can 
ignore the brick

???

???

???

???



Focus on the last brick
Otherwise, we need to paint the last brick

???

?



Focus on the last brick
Otherwise, we need to paint the last brick

???

?

The left side is independent of the right side

 The left side can be calculated recursively



Why independent?
If we overpaint bricks, we can shorten the first stroke
This is not affected by colors

???

?



Why independent?
If we overpaint bricks, we can shorten the first stroke
This is not affected by colors

???

??



Calculate the right side
 All bricks have the same color now

 We can choose any length

 The number of borders between black and white increases at most 2 in one 
stroke

# ݂݋ ݉ݑ݉�݊�݉ ݏ݁݇݋ݎݐݏ = ܿ݁�݈ሺ# ݂݋ ݏݎ݁݀ݎ݋ܾ �݊ ݀݁ݎ�ݏ݁݀ ʹݏݎ݋݈݋ܿ ሻ
This is always feasible



DP in ܱሺ݊݇ሻ
 If the initial color of � is the same as the desired color݀݌ � = �]݌݀ − ͳ]
 Otherwise݀݌ � = min�−�≤�≤�−ଵ ݌݀ � + ܿ݁�݈ ܾ � + ͳ. . �ʹ + ͳ
 Answer is ݀݌[݊]

* ܾ[� + ͳ. . �]: # of borders in desired colors from � + ͳ to �



Speed up݀݌ � = min�−�≤�≤�−ଵ ݌݀ � + ܿ݁�݈ ܾ � + ͳ. . �ʹ + ͳ



Speed up݀݌ � = min�−�≤�≤�−ଵ ݌݀ � + ܿ݁�݈ ܾ � + ͳ. . �ʹ + ͳ
݌݀ � = min�−�≤�≤�−ଵ ݌݀ � + ܿ݁�݈ ܾ Ͳ. . � − ܾ Ͳ. . � + ͳʹ + ͳ



Speed up݀݌ � = min�−�≤�≤�−ଵ ݌݀ � + ܿ݁�݈ ܾ � + ͳ. . �ʹ + ͳ
݌݀ � = min�−�≤�≤�−ଵ ݌݀ � + ܿ݁�݈ ܾ Ͳ. . � − ܾ Ͳ. . � + ͳʹ + ͳ
݌݀ � = min�−�≤�≤�−ଵ ܿ݁�݈ ݌݀ʹ � − ܾ Ͳ. . � + ͳ + ܾ[Ͳ. . �] + ʹʹ



Speed up

[�]݌݀ = ܿ݁�݈ min�−�≤�≤�−ଵ ݌݀ʹ � + ܾ Ͳ. . � + ͳ + ܾ Ͳ. . � + ʹʹ

݌݀ � = min�−�≤�≤�−ଵ ݌݀ � + ܿ݁�݈ ܾ � + ͳ. . �ʹ + ͳ
݌݀ � = min�−�≤�≤�−ଵ ݌݀ � + ܿ݁�݈ ܾ Ͳ. . � − ܾ Ͳ. . � + ͳʹ + ͳ
݌݀ � = min�−�≤�≤�−ଵ ܿ݁�݈ ݌݀ʹ � − ܾ Ͳ. . � + ͳ + ܾ[Ͳ. . �] + ʹʹ



Speed up

[�]݌݀ = ܿ݁�݈ ૚−�≥�≥�−�ܖ�ܕ ૛�� � + � ૙. . � + ૚ + ܾ Ͳ. . � + ʹʹ

݌݀ � = min�−�≤�≤�−ଵ ݌݀ � + ܿ݁�݈ ܾ � + ͳ. . �ʹ + ͳ
݌݀ � = min�−�≤�≤�−ଵ ݌݀ � + ܿ݁�݈ ܾ Ͳ. . � − ܾ Ͳ. . � + ͳʹ + ͳ

This can be calculated in �ሺ૚ሻ with deque

or �ሺܗܔ��ሻ with segment tree

݌݀ � = min�−�≤�≤�−ଵ ܿ݁�݈ ݌݀ʹ � − ܾ Ͳ. . � + ͳ + ܾ[Ͳ. . �] + ʹʹ



Summary
 Calculate the left and right side independently
after the first stroke

 The left side can be calculated recursively

 The right side can be calculated only by # of borders

 Speed up DP with cumulative sum and data structure

 The time complexity is ܱሺ݊ሻ or ܱሺ݊ log ݊ሻ



F: Pizza Delivery



Problem
 Given a directed positive-weighted graph. 

 When the direction of i-th edge is reversed, how does the distance 
from s to t change, shorter, longer, or unchanging?

 Answer it about each edge.

s

t

1
5

1

4

2

s

t

1
5

1

4

2



Shorter or Not?
 We denote the distance from u to v on a graph G by d(G, u, v).

 Let’s reǀerse aŶ edge
 remove e = (u, v, c)

 add e’ = ;ǀ, u, ĐͿ

 d(G - e + e’, s, tͿ < d;G, s, tͿ iff eǀerǇ shortest path oŶ G + e’ ŵust ruŶ 
through e’ aŶd ŵust Ŷot ruŶ through e.

 Check d(G, s, v) + c + d(G, u, t) is shorter or not.

 Calculate d(G, s, ・) and d(G, ・, t) with Dijkstra’s algorithm.



Longer or Not? (1/2)
 Assume d(G - e + e’, s, tͿ is Ŷot shorter.

 Prop:

 let A = d;G + e’, s, uͿ + Đ + d;G + e’, ǀ, tͿ
 let B = d;G + e’, s, ǀͿ + Đ + d;G + e’, u, tͿ
 At least oŶe of A or B is larger thaŶ d;G + e’, s, tͿ.

 Proof:

 2 d;G + e’, s, tͿ < A + B, siŶĐe
 d;G + e’, s, tͿ ≦ d;G + e’, s, uͿ + d;G + e’, u, tͿ aŶd
 d;G + e’, s, tͿ ≦ d;G + e’, s, ǀͿ + d;G + e’, ǀ, tͿ



Longer or Not? (2/2)
 Assume d(G - e + e’, s, tͿ is Ŷot shorter. 

 Let H be a subgraph of all shortest paths on G.

1. When e is in all shortest path of G

 e is a bridge of H.

 d(G - e + e’, s, tͿ > d;G, s, tͿ, siŶĐe the prop.

2. Otherwise

 ReŵoǀiŶg e doesŶ’t ĐhaŶge shortest path of G.
 d(G - e + e’, s, tͿ = d;G, s, tͿ



Enumerate Bridges
 Bridge: an edge, when it is removed, the number of connected 
components increases.

 In this case, when a bridge is removed, s and t are disconnected.

 Graph H is a DAG. Bridges are enumerated with simple calculation by 
topological order.

s t



G: Rendezvous on a Tetrahedron



Problem Summaryܣ

ܥܤ
ܦ

• Two worms crawled on the 

surface of a regular tetrahedron

• The trails were straight

• The unit length of the trails was  

the length of the edge of the 

tetrahedron

• Answer whether two worms 

stopped on the same face or not



Trails on the Unfolding

ܣ

ܥܤ
ܦ ܥ

ܣ
ܤ

ܾ݀ܿ
ܽ

Regular Tetrahedron Unfolding

The trails are straight lines on the unfolding.

ܦ
ܥ ܥ
ܤܽ

Out of the unfolding?

Expand the unfolding.



Expanding the Unfolding

ܥ

ܣ

ܤ݀
ܾܿ
ܦܽ

ܥ ܥ
ܽ ܽ

ܾ
݀݀

ܤܦ
ܣ ܣ

ܾ
ܿ ܿ

݀ ܾ

ܣܣ

ܤ ܦ

ܦ ܤ
ܥܥ

ܦ ܤ

ܿ ܿ
݀ ܾ

ܽ ܿܿ

ܥ ܥ

ܥܥ ܣ

ܾ ݀
ܽ ܽ

ܽ ܽ
ܾ ݀

ܿ The labels, which 

represent the faces of 

the tetrahedron, 

appear periodically. 



To Simplify Discrimination
transform

ܣ

Discriminating the faces by

• parity of integer part of x coordinate

• parity of integer part of y coordinate

• comparing fractional part of x and y

• No iteration is needed: O(1)

ܣ

Expanded Unfolding



H: Homework



Problem Summary

1 2 3 4 5 6

Mathematics

Informatics
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Problem Summary

1 2 3 4 5 6

Mathematics

Informatics



Problem Summary

1 2 3 4 5 6

He has completed 4 assignments.

#Assignments he completes depends on the coin flips.

What is the maximum/minimum?



Maximum (Easy)
A simple greedy algorithm works.
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Maximum (Easy)
A simple greedy algorithm works.
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A simple greedy algorithm works.
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Maximum (Easy)
A simple greedy algorithm works.
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Maximum (Easy)
A simple greedy algorithm works.

1 2 3 4 5 6

Mathematics

Informatics



Maximum (Easy)
A simple greedy algorithm works.

1 2 3 4 5 6

He has completed 6 assignments.



Minimum (Difficult)

Key observation: His strategy is optimal.

Even if he can predict the future coin flips, he cannot complete more 
assignments.

1 2 3 4 5 6



Minimum (Difficult)minୡ୭୧୬ ୤l୧୮s #completed assignments by his strategy

= minୡ୭୧୬ ୤l୧୮s maxsୡ୦ୣୢul୧୬୥#completed assignments

Instead of using the greedy scheduling, 

we use the bipartite matching.



Bipartite matching

1 2 3 4 5 6

a

a

b

c

A

B

C

b c

1 4 6

2 3 5

A B C

2 3 5

1 4 6
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Bipartite matching

1 2 3 4 5 6

a

a

b

c

A

B

C

b c

1 4 6

2 3 5

A B C



Connecting two graphs

1 2 3 4 5 6

a

a

b

c

A

B

C

b c

1 4 6

2 3 5

A B C

2 3 5

1 4 6



Connecting two graphs

a b c

1 4 6

2 3 5

A B C

2 3 5

1 4 6

ݏ

ݐ



minimum ൒maximum flow

a b c

1 4 6

2 3 5

A B C

2 3 5

1 4 6

ݏ

ݐ

Day 2: a or A 

Day 4: b or B



minimum ൑maximum flow

a b c

1 4 6

2 3 5

A B C

2 3 5

1 4 6

ݏ

ݐ



minimum ൑maximum flow

a b c

4 6

2 3

A B C

5

1

These are maximum matchings.



I: Starting a Scenic 
Railroad Service



Problem:
Plan the number of seats of a new tourist train.

There are two policies:

(P1) Each passenger can choose a preferable 

seat in the available ones.

(P2) Each passenger is assigned a seat by the 

railroad operator.



Key Point for Policy-1  (1/2)

For a passenger ݌,  let ݏሺ݌ሻ be the number of 

passengers whose travel sections overlap that of ݌.

The number of seats should be, at least, ݏሺ݌ሻ.
Reason: Assume that the reservation of ݌ is the last 

one.  If the number of seat is less than ݏሺ݌ሻ, all of 

the seats  might be reserved by the other 

passengers.  Thus, there may be no seats for ݌. 



Answer:   ݏͳ =  max ሻ݌ሺݏ for all passenger ݌,

Algorithm: ݐሺ݌ሻ is computed easily.ݏሺ݌ሻ = ܰ − ሻ: [passengers whose sections do not overlap݌ሺݐ ሻܰ: [total number of passengers]݌ሺݐ

that of ݐ[݌ሺ݌ሻ= [alight before p] ∪ [board after p]

Key Point for Policy-1 (2/2)



Key Point for Policy-2
Answer:ݏʹ is the maximum number of passengers whose travel 

sections  overlap each other.

Reason: 

if the number of seats less than ݏʹ, there are a passenger 

with no seat.

Algorithm: 

Count the maximum number of passengers for all stations.



J: String Puzzle



Problem Summary

- Letters at some positions of a secret string, and

- some info on identical substrings

are known. Guess the letters in other positions!



Example:
͞The substriŶg of the raŶge [ϭ .. ϭϬ9-1] 
and that of [2 .. 109] are the saŵe.͟

A

Hint on Overlapping Substrings:
It’s Powerful



Char at [1] and [2] are the same.

A

Hint on Overlapping Substrings:
It’s Powerful



Hint on Overlapping Substrings:
It’s Powerful

Char at [1] and [2] are the same.

Char at [2] and [3] are the same.

A



Hint on Overlapping Substrings:
It’s Powerful

Char at [1] and [2] are the same.

Char at [2] and [3] are the same.

…
Char at [109-1] and [109] are the same.

A

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・



Hint on Overlapping Substrings:
It’s Powerful

Single hint may reveal all the 109 letters of 
the string.

 Infeasible to propagate all info to every 
position by BFS, Union-Find, etc.

A

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・



Key Observation

Partitioning of 

the secret string

Identical substring

to the left is given



Solution:
Canonicalize to the Leftmost Position

 Each position has at most one 
hiŶt that goes to the left. “o…
 Copy each known character to the left 
most position traversing the hints.

 For each query, travers the hints to the 
left most position and check the letter.

 O( |#hint|2 ) running time



Background: LZ77 Compression

Storing the ͞previous occurrence of the
identical substriŶg͟ instead of bare
characters is a very popular compression
method. (Used in ͞zip͟ tool, etc.)

A

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・



K: Counting
Cycles



Problem:
Given an undirected graph G = (V, E)

Find the number of simple cycles

Conditions:

- G is connected

- m ≦ n + 15



Observation
Given an undirected graph G = (V, E)

Find the number of simple cycles

Conditions:

- G is connected

- m ≦ n + 15

These conditions imply that 

G is a tree + k additional edges

(k ≦ 16)



Upper-bound of #Cycles
- Each additional edge creates a cycle (called a 

͞fundamental cycle͟Ϳ
- Any cycle is generated by taking XOR of some 

fundamental cycles

;see: ͞cycle space ,͟ ͞cycle basis͟Ϳ 

Thus, the number of cycles is at most 2k; hence, we 

can solve this problem if the complexity of finding 

each cycle is reduced!



Reducing complexity
Standard enumeration algorithm requires O(nm) or 

O(n+m) per cycle, which is too expensive for n = 

100,000

- Contracting vertices with degree at most two

does not affect the solution

- Resulting graph has at most 2k vertices

After this preprocessing, any enumeration 

algorithm will work



Further Information
- Best-known #Cycles for k = 16 is 41400, which is 

attained by the Tutte—Coxeter graph and 8-cage

- Cycle enumeration in O(n+m) delay is presented 

by Johnson [1975]


