
Commentaries on

Problems

JUDGE TEAM

ACM ICPC 2017 ASIA TSUKUBA REGIONAL

Differences from Previous Years

Python introduced, like World Finals.
Both Python 2 and 3.

Order of problems shuffled.
The first three problems are the easiest,
but others are in a random order.

Estimated Order of Difficulty

Coding A B C I G J E F H K D

Analysis A B C G I F E J K D H

Hardest →← Easiest

Predicted # of Correct Answers

A B C D E F G H I J K

Average 49.85 48.46 42.23 4.15 12.92 22.54 22.23 3.85 30.23 14.31 6.77

Std. Dev. 0.36 1.91 6.27 2.90 5.50 6.79 8.29 4.87 5.65 8.40 3.38

0

10

20

30

40

50

Estimated vs. Actual

A B C D E F G H I J K

Estimated 49.85 48.46 42.23 4.15 12.92 22.54 22.23 3.85 30.23 14.31 6.77

Actual 49 39 42 2 10 12 19 2 35 1 3

0

10

20

30

40

50

Estimated vs. Actual

A C B I G F E K H D J

Estimated 49.85 42.23 48.46 30.23 22.23 22.54 12.92 6.77 3.85 4.15 14.31

Actual 49 42 39 35 19 12 10 3 2 2 1

0

10

20

30

40

50

problems solved & # teams

0

2

4

6

8

10

12

14

Solved 0 1 2 3 4 5 6 7 8 9 10 11

Teams 1 3 4 11 9 12 4 2 2 1 0 1

A: Secret of
Chocolate Pole

Story
•Wendy makes poles of chocolate.

•DiffereŶt poles ŵaǇ haǀe differeŶt ͞side ǀieǁs.͟

Problem
CouŶt the Ŷuŵďer of possiďle distiŶĐt ͞side ǀieǁs.͟
Conditions:

• Pole consists of dark and white
chocolate, stacked alternately.

• Top and bottom are dark.

• Conditions on height

• dark block: 1 cm, k cm

•white block: 1 cm

• pole: ≤ l cm

≤ l
k

1

pole

Example

k = 3

l = 5

l = 5, k = 3 ⇒ answer = 6

Solution --- dynamic programming

1. Consider the number of side views of exactly n high, S(n)

2. Sum up S(n) for 0 ≤ n ≤ l

n-2

2

n-(k+1)

k+1

S(n-2) S(n-(k+1))S(n) = +

For large n,

Special cases

1

k

S(1) =1

2
k

S(2) = 0

n k

S(n) = S(n-2)

if 2 < n < k

Top should

be dark

n k

S(n) = S(n-2) + 1

if n = k

n
k

S(n) = S(n-2)

if n = k + 1

S(n) =

S(n-2) +

S(n-(k+1))

if n > k + 1

and, general case

Remaining Mystery:
The secret of chocolate poles

•Wendy was a spy

•She was developing a secret coding that uses the
patterns of chocolate poles

Problem B:
Parallel Lines

Problem Summary
• Couple all the points into pairs

• Draw a connecting line between the points of each point pairs

• Count number of the parallel line pairs

• Answer the maximum number of the parallel line pairs

0 0 1

number of parallel line pairs

Couple all the points into pairs
• For example of 6 points, couple the points into pairs as follows.

Even for 16 points, 15x13x11x9x7x5x3x1=2027025

• DO NOT make permutations of all the points. 16! is TOO LARGE.

In this case of 6 points, calculation

amount is 5x3x1=15

Second pair → 3 patterns

First pair → 5 patterns

Third pair → 1 patterns

Judge that two vectors are parallel
• For vectors and , holds when and are parallel. 0|| 21 vv

1v 2v 2v1v

),,(

),,(

),,(

21212121212121

2222

1111

xyyxzxxzyzzyvv

zyxv

zyxv





• In this case, both of and are on XY-plane.

),0,0(

)0,,(

)0,,(

212121

222

111

xyyxvv

yxv

yxv





• So you can judge it by computing 02121  xyyx

1v 2v

← z component

C: Medical
Checkup

Problem:
• Students need to undergo checkups in order.

• The i-th student takes hi unit time to finish

each checkup item.

• Find the items students are being checked up

or waiting for at specified time.

Student 1Student 3 Student 2 Item 1 Item 2 Item 3

……

Solution:
Consider a time sequence diagram.

Item 1

Item 2

Item 3

St.1 St.2 St.3

St.1 St.2

St.1 St.2

St.3

St.3

Let’s Đall the i-th student is important if hk<hi for all k < i.

• Non-important student just follows a preceding student.

• Important student moves as if he/she ignores all others.

=> Student moves with uniform linear motion. O(n) time.

D: Making
Perimeter of the
Convex Hull
Shortest

Problem: Given a set of planar points,
make the convex hull of the set
shortest by eliminating two points

The convex hull of a set of

planar points is the

smallest convex polygon

that has all the points in

the set on its edges or

inside of it.

Finding the Convex Hull
Many algorithms have been proposed.

➢ Gift wrapping (Jarvis march): ܱሺ݊ℎሻ
➢ Graham scan: ܱሺ݊ log ݊ሻ
➢ AŶdreǁ’s algorithŵ: ܱሺ݊ log ݊ሻ
➢ Divide and conquer: ܱሺ݊ log ݊ሻ
➢ ChaŶ’s algorithŵ: ܱሺ݊ log ℎሻ݊ = # of points in the setℎ = # of vertices of the convex hullℎ may be as large as ݊ in this problem

Too slow as ݊ and ℎ
can be as large as ͳͲ5

Andrew’s Monotone Chain
To construct the upper half of the convex hull:

1. Sort the points with their � coordinates, start a left to right scan,

naming two leftmost points ܲ and ܳ
2. If the next point ܴ is below the line ܲܳ, remember ܲ in the candidate

point stack, let ܲ be ܳ, ܳ be ܴ, and repeat this step

3. If ܴ is above ܲܳ, ܳ cannot be a vertex of the convex hull;

let ܳ be ܲ, pop ܲ from the stack, and go back to 2

4. If no more point is left, stop

The lower half can be constructed similarly

ܲ ܳ ܴ ܲ ܳ ܴ ܳ ܴ ܲ ܳܲ ܴ

The Convex Hull can be Made Shorter
by Eliminating Some Points

Naïve Solution
➢ Consider all possible subsets after eliminating

two of the points

➢ Find the convex hulls of each of them

This algorithm is too slow

➢ There are ݊ ݊ − ͳ /ʹ ways to eliminate two
points

➢ Time complexity of ܱሺ݊ log ݊ሻ is required to find
the convex hull of each of the subset

➢ The total time complexity will be ܱሺ݊ଷ log ݊ሻ

Eliminating Two Points, One by One

➢ One of the points is on the original convex hull;
Otherǁise, the ĐoŶǀeǆ hull ǁoŶ’t ĐhaŶge

➢ Elimination will result in a new convex hull

➢ Another point is to be eliminated from those on
the new convex hull, which either was

• Already on the original convex hull, or

• Added newly because of the first elimination

Eliminating One Point

➢ Find the original convex hull: ܱሺ݊ log ݊ሻ
➢ Find the new convex hulls for when each point on

the original convex hull is eliminated (ℎ cases)

➢ Candidate new vertices of the hull are those
between two adjacent original hull points

➢ Each point is checked only twice, ʹ݊ times in total,
keeping the complexity of ܱሺ݊ log ݊ሻ

Eliminating a Newly Added Point

➢ Eliminating one of newly added points requires
inspecting only those between two adjacent
points on the new convex hull

➢ The total number of points investigated is ʹ݊
again, not affecting the total computational
complexity of ܱሺ݊ log ݊ሻ

Eliminating Two Points on the
Original Convex Hull

When two points are adjacent on the original hull

➢ Points to investigate are those between two hull
points adjacent to the eliminated two

➢ Each point is checked only three times, and thus ͵݊ checks in total are made

Eliminating Two Point on the
Original Convex Hull (cont.)

When two points are not adjacent

➢The gains of shortening the convex hull
perimeter are independent;
the sum of their gains is the net gain

➢But considering all the ℎሺℎ − ͵ሻ/ʹ ≅݊ଶ/ʹ ĐoŵďiŶatioŶs is too ĐostlǇ…

Finding the Best Combination
without Too Much Cost

Keep the list of the best 4 candidate points: ܱሺℎሻ
➢ The #1 candidate can be adjacent to only 2 of the

3 other points in the list

➢ If #1 is not adjacent to #2, the answer is #1+#2

➢ Otherwise, if #1 is not adjacent to #3, #1+#3

➢ If neither, #1 cannot be adjacent to #4;
The answer is the better of #1+#4 and #2+#3

Key Points

➢ Focusing on the differences may
drastically reduce the computational
complexity

➢ Take all possibilities into consideration

E: Black or White

Problem Summary
Paint a row of bricks into desired colors
The number of bricks painted in one stroke is at most ݇
Calculate the minimum number of strokesͳ ൑ ݇ ൑ ݊ ൑ 5ͲͲͲͲͲ

Focus on the last brick
If the initial color of the last brick is the same as the desired color, we can
ignore the brick

???

???

???

???

Focus on the last brick
Otherwise, we need to paint the last brick

???

?

Focus on the last brick
Otherwise, we need to paint the last brick

???

?

The left side is independent of the right side

 The left side can be calculated recursively

Why independent?
If we overpaint bricks, we can shorten the first stroke
This is not affected by colors

???

?

Why independent?
If we overpaint bricks, we can shorten the first stroke
This is not affected by colors

???

??

Calculate the right side
 All bricks have the same color now

 We can choose any length

 The number of borders between black and white increases at most 2 in one
stroke

݂݋ ݉ݑ݉�݊�݉ ݏ݁݇݋ݎݐݏ = ܿ݁�݈ሺ# ݂݋ ݏݎ݁݀ݎ݋ܾ �݊ ݀݁ݎ�ݏ݁݀ ʹݏݎ݋݈݋ܿ ሻ
This is always feasible

DP in ܱሺ݊݇ሻ
 If the initial color of � is the same as the desired color݀݌ � = �]݌݀ − ͳ]
 Otherwise݀݌ � = min�−�≤�≤�−ଵ ݌݀ � + ܿ݁�݈ ܾ � + ͳ. . �ʹ + ͳ
 Answer is ݀݌[݊]

* ܾ[� + ͳ. . �]: # of borders in desired colors from � + ͳ to �

Speed up݀݌ � = min�−�≤�≤�−ଵ ݌݀ � + ܿ݁�݈ ܾ � + ͳ. . �ʹ + ͳ

Speed up݀݌ � = min�−�≤�≤�−ଵ ݌݀ � + ܿ݁�݈ ܾ � + ͳ. . �ʹ + ͳ
݌݀ � = min�−�≤�≤�−ଵ ݌݀ � + ܿ݁�݈ ܾ Ͳ. . � − ܾ Ͳ. . � + ͳʹ + ͳ

Speed up݀݌ � = min�−�≤�≤�−ଵ ݌݀ � + ܿ݁�݈ ܾ � + ͳ. . �ʹ + ͳ
݌݀ � = min�−�≤�≤�−ଵ ݌݀ � + ܿ݁�݈ ܾ Ͳ. . � − ܾ Ͳ. . � + ͳʹ + ͳ
݌݀ � = min�−�≤�≤�−ଵ ܿ݁�݈ ݌݀ʹ � − ܾ Ͳ. . � + ͳ + ܾ[Ͳ. . �] + ʹʹ

Speed up

[�]݌݀ = ܿ݁�݈ min�−�≤�≤�−ଵ ݌݀ʹ � + ܾ Ͳ. . � + ͳ + ܾ Ͳ. . � + ʹʹ

݌݀ � = min�−�≤�≤�−ଵ ݌݀ � + ܿ݁�݈ ܾ � + ͳ. . �ʹ + ͳ
݌݀ � = min�−�≤�≤�−ଵ ݌݀ � + ܿ݁�݈ ܾ Ͳ. . � − ܾ Ͳ. . � + ͳʹ + ͳ
݌݀ � = min�−�≤�≤�−ଵ ܿ݁�݈ ݌݀ʹ � − ܾ Ͳ. . � + ͳ + ܾ[Ͳ. . �] + ʹʹ

Speed up

[�]݌݀ = ܿ݁�݈ ૚−�≥�≥�−�ܖ�ܕ ૛�� � + � ૙. . � + ૚ + ܾ Ͳ. . � + ʹʹ

݌݀ � = min�−�≤�≤�−ଵ ݌݀ � + ܿ݁�݈ ܾ � + ͳ. . �ʹ + ͳ
݌݀ � = min�−�≤�≤�−ଵ ݌݀ � + ܿ݁�݈ ܾ Ͳ. . � − ܾ Ͳ. . � + ͳʹ + ͳ

This can be calculated in �ሺ૚ሻ with deque

or �ሺܗܔ��ሻ with segment tree

݌݀ � = min�−�≤�≤�−ଵ ܿ݁�݈ ݌݀ʹ � − ܾ Ͳ. . � + ͳ + ܾ[Ͳ. . �] + ʹʹ

Summary
 Calculate the left and right side independently
after the first stroke

 The left side can be calculated recursively

 The right side can be calculated only by # of borders

 Speed up DP with cumulative sum and data structure

 The time complexity is ܱሺ݊ሻ or ܱሺ݊ log ݊ሻ

F: Pizza Delivery

Problem
 Given a directed positive-weighted graph.

 When the direction of i-th edge is reversed, how does the distance
from s to t change, shorter, longer, or unchanging?

 Answer it about each edge.

s

t

1
5

1

4

2

s

t

1
5

1

4

2

Shorter or Not?
 We denote the distance from u to v on a graph G by d(G, u, v).

 Let’s reǀerse aŶ edge
 remove e = (u, v, c)

 add e’ = ;ǀ, u, ĐͿ

 d(G - e + e’, s, tͿ < d;G, s, tͿ iff eǀerǇ shortest path oŶ G + e’ ŵust ruŶ
through e’ aŶd ŵust Ŷot ruŶ through e.

 Check d(G, s, v) + c + d(G, u, t) is shorter or not.

 Calculate d(G, s, ・) and d(G, ・, t) with Dijkstra’s algorithm.

Longer or Not? (1/2)
 Assume d(G - e + e’, s, tͿ is Ŷot shorter.

 Prop:

 let A = d;G + e’, s, uͿ + Đ + d;G + e’, ǀ, tͿ
 let B = d;G + e’, s, ǀͿ + Đ + d;G + e’, u, tͿ
 At least oŶe of A or B is larger thaŶ d;G + e’, s, tͿ.

 Proof:

 2 d;G + e’, s, tͿ < A + B, siŶĐe
 d;G + e’, s, tͿ ≦ d;G + e’, s, uͿ + d;G + e’, u, tͿ aŶd
 d;G + e’, s, tͿ ≦ d;G + e’, s, ǀͿ + d;G + e’, ǀ, tͿ

Longer or Not? (2/2)
 Assume d(G - e + e’, s, tͿ is Ŷot shorter.

 Let H be a subgraph of all shortest paths on G.

1. When e is in all shortest path of G

 e is a bridge of H.

 d(G - e + e’, s, tͿ > d;G, s, tͿ, siŶĐe the prop.

2. Otherwise

 ReŵoǀiŶg e doesŶ’t ĐhaŶge shortest path of G.
 d(G - e + e’, s, tͿ = d;G, s, tͿ

Enumerate Bridges
 Bridge: an edge, when it is removed, the number of connected
components increases.

 In this case, when a bridge is removed, s and t are disconnected.

 Graph H is a DAG. Bridges are enumerated with simple calculation by
topological order.

s t

G: Rendezvous on a Tetrahedron

Problem Summaryܣ

ܥܤ
ܦ

• Two worms crawled on the

surface of a regular tetrahedron

• The trails were straight

• The unit length of the trails was

the length of the edge of the

tetrahedron

• Answer whether two worms

stopped on the same face or not

Trails on the Unfolding

ܣ

ܥܤ
ܦ ܥ

ܣ
ܤ

ܾ݀ܿ
ܽ

Regular Tetrahedron Unfolding

The trails are straight lines on the unfolding.

ܦ
ܥ ܥ
ܤܽ

Out of the unfolding?

Expand the unfolding.

Expanding the Unfolding

ܥ

ܣ

ܤ݀
ܾܿ
ܦܽ

ܥ ܥ
ܽ ܽ

ܾ
݀݀

ܤܦ
ܣ ܣ

ܾ
ܿ ܿ

݀ ܾ

ܣܣ

ܤ ܦ

ܦ ܤ
ܥܥ

ܦ ܤ

ܿ ܿ
݀ ܾ

ܽ ܿܿ

ܥ ܥ

ܥܥ ܣ

ܾ ݀
ܽ ܽ

ܽ ܽ
ܾ ݀

ܿ The labels, which

represent the faces of

the tetrahedron,

appear periodically.

To Simplify Discrimination
transform

ܣ

Discriminating the faces by

• parity of integer part of x coordinate

• parity of integer part of y coordinate

• comparing fractional part of x and y

• No iteration is needed: O(1)

ܣ

Expanded Unfolding

H: Homework

Problem Summary

1 2 3 4 5 6

Mathematics

Informatics

Problem Summary

1 2 3 4 5 6

Mathematics

Informatics

Problem Summary

1 2 3 4 5 6

Mathematics

Informatics

Problem Summary

1 2 3 4 5 6

Mathematics

Informatics

Problem Summary

1 2 3 4 5 6

Mathematics

Informatics

Problem Summary

1 2 3 4 5 6

Mathematics

Informatics

Problem Summary

1 2 3 4 5 6

Mathematics

Informatics

Problem Summary

1 2 3 4 5 6

Mathematics

Informatics

Problem Summary

1 2 3 4 5 6

He has completed 4 assignments.

#Assignments he completes depends on the coin flips.

What is the maximum/minimum?

Maximum (Easy)
A simple greedy algorithm works.

1 2 3 4 5 6

Mathematics

Informatics

Maximum (Easy)
A simple greedy algorithm works.

1 2 3 4 5 6

Mathematics

Informatics

Maximum (Easy)
A simple greedy algorithm works.

1 2 3 4 5 6

Mathematics

Informatics

Maximum (Easy)
A simple greedy algorithm works.

1 2 3 4 5 6

Mathematics

Informatics

Maximum (Easy)
A simple greedy algorithm works.

1 2 3 4 5 6

Mathematics

Informatics

Maximum (Easy)
A simple greedy algorithm works.

1 2 3 4 5 6

Mathematics

Informatics

Maximum (Easy)
A simple greedy algorithm works.

1 2 3 4 5 6

Mathematics

Informatics

Maximum (Easy)
A simple greedy algorithm works.

1 2 3 4 5 6

He has completed 6 assignments.

Minimum (Difficult)

Key observation: His strategy is optimal.

Even if he can predict the future coin flips, he cannot complete more
assignments.

1 2 3 4 5 6

Minimum (Difficult)minୡ୭୧୬ ୤l୧୮s #completed assignments by his strategy

= minୡ୭୧୬ ୤l୧୮s maxsୡ୦ୣୢul୧୬୥#completed assignments

Instead of using the greedy scheduling,

we use the bipartite matching.

Bipartite matching

1 2 3 4 5 6

a

a

b

c

A

B

C

b c

1 4 6

2 3 5

A B C

2 3 5

1 4 6

Bipartite matching

1 2 3 4 5 6

a

a

b

c

A

B

C

b c

1 4 6

2 3 5

A B C

2 3 5

1 4 6

Bipartite matching

1 2 3 4 5 6

a

a

b

c

A

B

C

b c

1 4 6

2 3 5

A B C

Connecting two graphs

1 2 3 4 5 6

a

a

b

c

A

B

C

b c

1 4 6

2 3 5

A B C

2 3 5

1 4 6

Connecting two graphs

a b c

1 4 6

2 3 5

A B C

2 3 5

1 4 6

ݏ

ݐ

minimum ൒maximum flow

a b c

1 4 6

2 3 5

A B C

2 3 5

1 4 6

ݏ

ݐ

Day 2: a or A

Day 4: b or B

minimum ൑maximum flow

a b c

1 4 6

2 3 5

A B C

2 3 5

1 4 6

ݏ

ݐ

minimum ൑maximum flow

a b c

4 6

2 3

A B C

5

1

These are maximum matchings.

I: Starting a Scenic
Railroad Service

Problem:
Plan the number of seats of a new tourist train.

There are two policies:

(P1) Each passenger can choose a preferable

seat in the available ones.

(P2) Each passenger is assigned a seat by the

railroad operator.

Key Point for Policy-1 (1/2)

For a passenger ݌, let ݏሺ݌ሻ be the number of

passengers whose travel sections overlap that of ݌.

The number of seats should be, at least, ݏሺ݌ሻ.
Reason: Assume that the reservation of ݌ is the last

one. If the number of seat is less than ݏሺ݌ሻ, all of

the seats might be reserved by the other

passengers. Thus, there may be no seats for ݌.

Answer: ݏͳ = max ሻ݌ሺݏ for all passenger ݌,

Algorithm: ݐሺ݌ሻ is computed easily.ݏሺ݌ሻ = ܰ − ሻ: [passengers whose sections do not overlap݌ሺݐ ሻܰ: [total number of passengers]݌ሺݐ

that of ݐ[݌ሺ݌ሻ= [alight before p] ∪ [board after p]

Key Point for Policy-1 (2/2)

Key Point for Policy-2
Answer:ݏʹ is the maximum number of passengers whose travel

sections overlap each other.

Reason:

if the number of seats less than ݏʹ, there are a passenger

with no seat.

Algorithm:

Count the maximum number of passengers for all stations.

J: String Puzzle

Problem Summary

- Letters at some positions of a secret string, and

- some info on identical substrings

are known. Guess the letters in other positions!

Example:
͞The substriŶg of the raŶge [ϭ .. ϭϬ9-1]
and that of [2 .. 109] are the saŵe.͟

A

Hint on Overlapping Substrings:
It’s Powerful

Char at [1] and [2] are the same.

A

Hint on Overlapping Substrings:
It’s Powerful

Hint on Overlapping Substrings:
It’s Powerful

Char at [1] and [2] are the same.

Char at [2] and [3] are the same.

A

Hint on Overlapping Substrings:
It’s Powerful

Char at [1] and [2] are the same.

Char at [2] and [3] are the same.

…
Char at [109-1] and [109] are the same.

A

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

Hint on Overlapping Substrings:
It’s Powerful

Single hint may reveal all the 109 letters of
the string.

 Infeasible to propagate all info to every
position by BFS, Union-Find, etc.

A

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

Key Observation

Partitioning of

the secret string

Identical substring

to the left is given

Solution:
Canonicalize to the Leftmost Position

 Each position has at most one
hiŶt that goes to the left. “o…
 Copy each known character to the left
most position traversing the hints.

 For each query, travers the hints to the
left most position and check the letter.

 O(|#hint|2) running time

Background: LZ77 Compression

Storing the ͞previous occurrence of the
identical substriŶg͟ instead of bare
characters is a very popular compression
method. (Used in ͞zip͟ tool, etc.)

A

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

K: Counting
Cycles

Problem:
Given an undirected graph G = (V, E)

Find the number of simple cycles

Conditions:

- G is connected

- m ≦ n + 15

Observation
Given an undirected graph G = (V, E)

Find the number of simple cycles

Conditions:

- G is connected

- m ≦ n + 15

These conditions imply that

G is a tree + k additional edges

(k ≦ 16)

Upper-bound of #Cycles
- Each additional edge creates a cycle (called a

͞fundamental cycle͟Ϳ
- Any cycle is generated by taking XOR of some

fundamental cycles

;see: ͞cycle space ,͟ ͞cycle basis͟Ϳ

Thus, the number of cycles is at most 2k; hence, we

can solve this problem if the complexity of finding

each cycle is reduced!

Reducing complexity
Standard enumeration algorithm requires O(nm) or

O(n+m) per cycle, which is too expensive for n =

100,000

- Contracting vertices with degree at most two

does not affect the solution

- Resulting graph has at most 2k vertices

After this preprocessing, any enumeration

algorithm will work

Further Information
- Best-known #Cycles for k = 16 is 41400, which is

attained by the Tutte—Coxeter graph and 8-cage

- Cycle enumeration in O(n+m) delay is presented

by Johnson [1975]

