ICPC — International Collegiate Programming Contest
Asia Regional Contest, Yokohama, 2019-11-17

Problem A

Fast Forwarding

Time Limit: 2 seconds

Mr. Anderson frequently rents video tapes of his favorite classic films. Watching the films so
many times, he has learned the precise start times of his favorite scenes in all such films. He
now wants to find how to wind the tape to watch his favorite scene as quickly as possible on his
video player.

When the [play] button is pressed, the film starts at the normal playback speed. The video
player has two buttons to control the playback speed: The [3x] button triples the speed, while
the [1/3x] button reduces the speed to one third. These speed control buttons, however, do not
take effect on the instance they are pressed. Exactly one second after playback starts and every
second thereafter, the states of these speed control buttons are checked. If the [3x] button is
pressed on the timing of the check, the playback speed becomes three times the current speed. If
the [1/3x] button is pressed, the playback speed becomes one third of the current speed, unless
it is already the normal speed.

For instance, assume that his favorite scene starts at 19 seconds from the start of the film.
When the [3x] button is on at one second and at two seconds after the playback starts, and
the [1/3x] button is on at three seconds and at five seconds after the start, the desired scene
can be watched in the normal speed five seconds after starting the playback, as depicted in the
following chart.

2 3 4 5 6
I ; j i I I
[ play | [ 3x_| | 1/3x | [ 1/3x |

1 2 3 456789101IR2B 14 15 16 17 18 19 20

E—_H

Your task is to compute the shortest possible time period after the playback starts until the
desired scene starts. The playback of the scene, of course, should be in the normal speed.

Input
The input consists of a single test case of the following format.
t

The given single integer ¢ (0 <t < 2°) is the start time of the target scene.

1



Output

Print an integer that is the minimum possible time in seconds before he can start watching the

target scene in the normal speed.

Sample Input 1

Sample Output 1

19

5

Sample Input 2

Sample Output 2

13

5

Sample Input 3

Sample Output 3

123456789098765

85

Sample Input 4

Sample Output 4

51

11

Sample Input 5

Sample Output 5

0

0

Sample Input 6

Sample Output 6

3

3

Sample Input 7

Sample Output 7

4

2




ICPC — International Collegiate Programming Contest
Asia Regional Contest, Yokohama, 2019-11-17

Problem B
Estimating the Flood Risk

Time Limit: 2 seconds

Mr. Boat is the owner of a vast extent of land. As many typhoons have struck Japan this year,
he became concerned of flood risk of his estate and he wants to know the average altitude of his
land. The land is too vast to measure the altitude at many spots. As no steep slopes are in the
estate, he thought that it would be enough to measure the altitudes at only a limited number
of sites and then approximate the altitudes of the rest based on them.

Multiple approximations might be possible based on the same measurement results, in which
case he wants to know the worst case, that is, one giving the lowest average altitude.

Mr. Boat’s estate, which has a rectangular shape, is divided into grid-aligned rectangular areas
of the same size. Altitude measurements have been carried out in some of these areas, and
the measurement results are now at hand. The altitudes of the remaining areas are to be
approximated on the assumption that altitudes of two adjoining areas sharing an edge differ at
most 1.

In the first sample given below, the land is divided into 5 x 4 areas. The altitudes of the areas at
(1,1) and (5,4) are measured 10 and 3, respectively. In this case, the altitudes of all the areas
are uniquely determined on the assumption that altitudes of adjoining areas differ at most 1.

In the second sample, there are multiple possibilities, among which one that gives the lowest
average altitude should be considered.

In the third sample, no altitude assignments satisfy the assumption on altitude differences.
10 2
3 3
Sample 1 Sample 2 Sample 3

Your job is to write a program that approximates the average altitude of his estate. To be
precise, the program should compute the total of approximated and measured altitudes of all
the mesh-divided areas. If two or more different approximations are possible, the program should
compute the total with the severest approximation, that is, one giving the lowest total of the
altitudes.



Input

The input consists of a single test case of the following format.

wdn
T1 Y1 21

Tn Yn Zn

Here, w, d, and n are integers between 1 and 50, inclusive. w and d are the numbers of areas in
the two sides of the land. n is the number of areas where altitudes are measured. The ¢-th line
of the following n lines contains three integers, x;, y;, and z; satisfying 1 < z; <w, 1 <y; <d,
and —100 < z; < 100. They mean that the altitude of the area at (z;,y;) was measured to be
z;j. At most one measurement result is given for the same area, i.e., for i # j, (v, ;) # (24, y;)-

Output

If all the unmeasured areas can be assigned their altitudes without any conflicts with the mea-
sured altitudes assuming that two adjoining areas have the altitude difference of at most 1,
output an integer that is the total of the measured or approximated altitudes of all the areas. If
more than one such altitude assignment is possible, output the minimum altitude total among
the possible assignments.

If no altitude assignments satisfy the altitude difference assumption, output No.

Sample Input 1 Sample Output 1
54 2 130

1110

543

Sample Input 2 Sample Output 2
54 3 -14

220

430

512

Sample Input 3 Sample Output 3
332 No

118

333

Sample Input 4 Sample Output 4
221 -404

11 -100




ICPC — International Collegiate Programming Contest
Asia Regional Contest, Yokohama, 2019-11-17

Problem C
Wall Painting

Time Limit: 6 seconds

Here stands a wall made of a number of vertical panels. The panels are not painted yet.

You have a number of robots each of which can paint panels in a single color, either red, green, or
blue. Each of the robots, when activated, paints panels between a certain position and another
certain position in a certain color. The panels painted and the color to paint them are fixed for
each of the robots, but which of them are to be activated and the order of their activation can
be arbitrarily decided.

You'd like to have the wall painted to have a high aesthetic value. Here, the aesthetic value
of the wall is defined simply as the sum of aesthetic values of the panels of the wall, and the
aesthetic value of a panel is defined to be:

e (, if the panel is left unpainted.

e The bonus value specified, if it is painted only in a single color, no matter how many times
it is painted.

e The penalty value specified, if it is once painted in a color and then overpainted in one or
more different colors.

Input

The input consists of a single test case of the following format.

nmazy
c1ly

Cm lm T™m

Here, n is the number of the panels (1 < n < 10%) and m is the number of robots (1 < m <
2 x 10%). x and y are integers between 1 and 10°, inclusive. x is the bonus value and —y is the
penalty value. The panels of the wall are consecutively numbered 1 through n. The i-th robot,
when activated, paints all the panels of numbers I; through r; (1 < I; < r; < n) in color with
color number ¢; (¢; € {1,2,3}). Color numbers 1, 2, and 3 correspond to red, green, and blue,
respectively.

Output

Output a single integer in a line which is the maximum achievable aesthetic value of the wall.



Sample Input 1

Sample Output 1

10 5
7

W Wk, WL o
OO -, 01 = =, O
> OON

70

Sample Input 2

Sample Output 2

26 397
1 11 13
3111

3 18 26

182

Sample Input 3

Sample Output 3

21 10 10 5
10 21
4 16
17
11 21
116
33

1 17
5 18
7 11
3 14

N~ OWONWWWRFE W

210

Sample Input 4

Sample Output 4

21 16 8 7
12 21
12

6 13
13 17
11 19
35
12 13
22
12 15
5 17
23

9
12
9

9

W W, PP PP, 0, NN

N 00 0O

153




ICPC — International Collegiate Programming Contest
Asia Regional Contest, Yokohama, 2019-11-17

Problem D

Twin Trees Bros.

Time Limit: 3 seconds

To meet the demand of ICPC (International Cacao Plantation Consortium), you have to check
whether two given trees are twins or not.

Example of two trees in the three-dimensional space.

The term tree in the graph theory means a connected graph where the number of edges is one
less than the number of nodes. ICPC, in addition, gives three-dimensional grid points as the
locations of the tree nodes. Their definition of two trees being twins is that, there exists a
geometric transformation function which gives a one-to-one mapping of all the nodes of one tree
to the nodes of the other such that for each edge of one tree, there exists an edge in the other tree
connecting the corresponding nodes. The geometric transformation should be a combination of
the following transformations:

e translations, in which coordinate values are added with some constants,

e uniform scaling with positive scale factors, in which all three coordinate values are multi-
plied by the same positive constant, and

e rotations of any amounts around either x—, y—, and z—axes.

Note that two trees can be twins in more than one way, that is, with different correspondences
of nodes.

Write a program that decides whether two trees are twins or not and outputs the number of
different node correspondences.

Hereinafter, transformations will be described in the right-handed xyz-coordinate system.

Trees in the sample inputs 1 through 4 are shown in the following figures. The numbers in the
figures are the node numbers defined below.



Sample Input 3 Sample Input 4

For the sample input 1, each node of the red tree is mapped to the corresponding node of the blue
tree by the transformation that translates (—3,0,0), rotates —m/2 around the z-axis, rotates
7/4 around the z-axis, and finally scales by /2. By this mapping, nodes #1, #2, and #3 of
the red tree at (0,0,0), (1,0,0), and (3,0,0) correspond to nodes #6, #5, and #4 of the blue
tree at (0,3,3), (0,2,2), and (0,0,0), respectively. This is the only possible correspondence of
the twin trees.

For the sample input 2, red nodes #1, #2, #3, and #4 can be mapped to blue nodes #6, #5,
#7, and #8. Another node correspondence exists that maps nodes #1, #2, #3, and #4 to #6,

45, #8, and #7.

For the sample input 3, the two trees are not twins. There exist transformations that map nodes
of one tree to distinct nodes of the other, but the edge connections do not agree.

For the sample input 4, there is no transformation that maps nodes of one tree to those of the
other.



Input
The input consists of a single test case of the following format.
n

1 Y1 21

Tn Yn Zn
ulp V1

Up—1 Un—1
Tn4+1 Yn+1 Zn+1

T2n Y2n 22n
Up Un

U2n—2 V2n—2

The input describes two trees. The first line contains an integer n representing the number of
nodes of each tree (3 < n < 200). Descriptions of two trees follow.

Description of a tree consists of n lines that give the vertex positions and n — 1 lines that show
the connection relation of the vertices.

Nodes are numbered 1 through n for the first tree, and n + 1 through 2n for the second tree.

The triplet (z;, y;, ;) gives the coordinates of the node numbered i. ;, y;, and z; are integers in
the range between —1000 and 1000, inclusive. Nodes of a single tree have distinct coordinates.

The pair of integers (u;, v;) means that an edge exists between nodes numbered u; and v;
(uj #vj). 1 <uj <mand 1 <v; <nholdforl <j<n-—1 andn+1<u; <2n and
n+1 <wv; <2n hold for n < j < 2n — 2.

Output

Output the number of different node correspondences if two trees are twins. Output a zero,
otherwise.



Sample Output 1

Sample Input 1

o O O o N m
O OO AN MO ANMLW ©
N O+ M- NO OO ¢ w

Sample Output 2

Sample Input 2

o O O
o o -

o

i
|

— O O N
NN FHF O N O ©O I~ 0

F A4 N AN ANNO OO O W W LWw

10



Sample Output 3

Sample Input 3

o
0001 — O O
OO = I NMIFHOANO O N~ 0

I A N AN 1 NO OO O W LW LWw

Sample Output 4

Sample Input 4

o
o
0001 — O O N
QO AN I N MK A O NO O N~ 0
F A AN AN ANNO OO O W WwLWw

11



Sample Input 5

Sample Output 5

P P, O O O W
W N O O O
N = O

10 4 6
00O
523
45
56

1

Sample Input 6

Sample Output 6

1

12




Sample Output 7

24

Sample Input 7

o O
N F I O N~ O O

o
o
N
~ = 4 = = O N |

o
N
o

13

0-20
002
00 -2
89
8 10
8 11
8 12
8 13
8 14




ICPC — International Collegiate Programming Contest
Asia Regional Contest, Yokohama, 2019-11-17

Problem E

Reordering the Documents

Time Limit: 4 seconds

Susan is good at arranging her dining table for convenience, but not her office desk.

Susan has just finished the paperwork on a set of documents, which are still piled on her desk.
They have serial numbers and were stacked in order when her boss brought them in. The
ordering, however, is not perfect now, as she has been too lazy to put the documents slid out
of the pile back to their proper positions. Hearing that she has finished, the boss wants her
to return the documents immediately in the document box he is sending her. The documents
should be stowed in the box, of course, in the order of their serial numbers.

The desk has room just enough for two more document piles where Susan plans to make two
temporary piles. All the documents in the current pile are to be moved one by one from the top
to either of the two temporary piles. As making these piles too tall in haste would make them
tumble, not too many documents should be placed on them. After moving all the documents to
the temporary piles and receiving the document box, documents in the two piles will be moved
from their tops, one by one, into the box. Documents should be in reverse order of their serial
numbers in the two piles to allow moving them to the box in order.

For example, assume that the pile has six documents #1, #3, #4, #2, #6, and #b5, in this order
from the top, and that the temporary piles can have no more than three documents. Then, she
can form two temporary piles, one with documents #6, #4, and #3, from the top, and the
other with #5, #2, and #1 (Figure E.1). Both of the temporary piles are reversely ordered.
Then, comparing the serial numbers of documents on top of the two temporary piles, one with
the larger number (#6, in this case) is to be removed and stowed into the document box first.
Repeating this, all the documents will be perfectly ordered in the document box.

Figure E.1. Making two temporary piles

Susan is wondering whether the plan is actually feasible with the documents in the current pile
and, if so, how many different ways of stacking them to two temporary piles would do. You

14



are asked to help Susan by writing a program to compute the number of different ways, which
should be zero if the plan is not feasible.

As each of the documents in the pile can be moved to either of the two temporary piles, for n
documents, there are 2™ different choice combinations in total, but some of them may disturb
the reverse order of the temporary piles and are thus inappropriate.

The example described above corresponds to the first case of the sample input. In this case, the
last two documents, #5 and #6, can be swapped their destinations. Also, exchanging the roles
of two temporary piles totally will be OK. As any other move sequences would make one of the
piles higher than three and/or make them out of order, the total number of different ways of
stacking documents to temporary piles in this example is 2 x 2 = 4.

Input

The input consists of a single test case of the following format.

nm
S1...8n

Here, n is the number of documents in the pile (1 < n < 5000), and m is the number of
documents that can be stacked in one temporary pile without committing risks of making it
tumble down (n/2 < m < n). Numbers s; through s, are the serial numbers of the documents
in the document pile, from its top to its bottom. It is guaranteed that all the numbers 1 through
n appear exactly once.

Output

Output a single integer in a line which is the number of ways to form two temporary piles suited
for the objective. When no choice will do, the number of ways is 0, of course.

If the number of possible ways is greater than or equal to 109 4+ 7, output the number of ways
modulo 10° + 7.

Sample Input 1 Sample Output 1
6 3 4

134265

Sample Input 2 Sample Output 2
6 6 8

134265

Sample Input 3 Sample Output 3
4 4 0

4312

15



ICPC — International Collegiate Programming Contest
Asia Regional Contest, Yokohama, 2019-11-17

Problem F
Halting Problem

Time Limit: 3 seconds

A unique law is enforced in the Republic of Finite Loop. Under the law, programs that never
halt are regarded as viruses. Releasing such a program is a cybercrime. So, you want to make
sure that your software products always halt under their normal use.

It is widely known that there exists no algorithm that can determine whether an arbitrary given
program halts or not for a given arbitrary input. Fortunately, your products are based on a
simple computation model given below. So, you can write a program that can tell whether a
given program based on the model will eventually halt for a given input.

The computation model for the products has only one variable x and N + 1 states, numbered
1 through N + 1. The variable z can store any integer value. The state N + 1 means that the
program has terminated. For each integer i (1 < ¢ < N), the behavior of the program in the
state ¢ is described by five integers a;, b;, ¢;, d; and e; (¢; and e; are indices of states).

On start of a program, its state is initialized to 1, and the value of x is initialized by xg, the
input to the program. When the program is in the state i (1 < i < N), either of the following
takes place in one execution step:

e if x is equal to a;, the value of x changes to x + b; and the program state becomes c;;

e otherwise, the value of x changes to = + d; and the program state becomes e;.

The program terminates when the program state becomes N + 1.

Your task is to write a program to determine whether a given program eventually halts or not
for a given input, and, if it halts, to compute how many steps are executed. The initialization
is not counted as a step.

Input
The input consists of a single test case of the following format.

N i)
ay by c1 dy eq

an by ey dy en

16



The first line contains two integers N (1 < N < 10°) and zy (—10 < 29 < 10'3). The number
of the states of the program is N 4 1. xg is the initial value of the variable x. Each of the next N
lines contains five integers a;, b;, ¢;, d; and e; that determine the behavior of the program when
it is in the state i. a;,b; and d; are integers between —10'3 and 10'3, inclusive. ¢; and e; are
integers between 1 and N + 1, inclusive.

Output

If the given program eventually halts with the given input, output a single integer in a line
which is the number of steps executed until the program terminates. Since the number may be
very large, output the number modulo 10? + 7.

Output —1 if the program will never halt.

Sample Input 1 Sample Output 1
20 9

51211

101322

Sample Input 2 Sample Output 2
31 -1

01423

10113

3-2214

Sample Input 3 Sample Output 3
33 -1

1-1222

111-13

114 -21

17



Sample Input 4

Sample Output 4

13 3

156 -10 4 4 2
190443

23 -204 4 1
61215

6 17 3 -1 6
32947

70948

5946
7110

8 -8 11
11 1 12
14 2 13
-4 11 1 12

26

18




ICPC — International Collegiate Programming Contest
Asia Regional Contest, Yokohama, 2019-11-17

Problem G

Ambiguous Encoding

Time Limit: 2 seconds

A friend of yours is designing an encoding scheme of a set of characters into a set of variable
length bit sequences. You are asked to check whether the encoding is ambiguous or not. In
an encoding scheme, characters are given distinct bit sequences of possibly different lengths as
their codes. A character sequence is encoded into a bit sequence which is the concatenation of
the codes of the characters in the string in the order of their appearances. An encoding scheme
is said to be ambiguous if there exist two different character sequences encoded into exactly the
same bit sequence. Such a bit sequence is called an “ambiguous binary sequence”.

For example, encoding characters “A”, “B”, and “C” to 0, 01 and 10, respectively, is ambiguous.
This scheme encodes two different character strings “AC” and “BA” into the same bit sequence
010.

Input

The input consists of a single test case of the following format.
n

w1

Wn,

Here, n is the size of the set of characters to encode (1 < n < 1000). The i-th line of the
following n lines, w;, gives the bit sequence for the i-th character as a non-empty sequence of at
most 16 binary digits, 0 or 1. Note that different characters are given different codes, that is,

w; # wj for i # j.

Output

If the given encoding is ambiguous, print in a line the number of bits in the shortest ambiguous
binary sequence. Output zero, otherwise.

Sample Input 1 Sample Output 1
3 3

0

01

10

19



Sample Input 2

Sample Output 2

3
00
01
1

0

Sample Input 3

Sample Output 3

3
00
10
1

0

Sample Input 4

Sample Output 4

10
1001
1011
01000
00011
01011
1010
00100
10011
11110
0110

13

Sample Input 5

Sample Output 5

3
1101
1

10

4

20




ICPC — International Collegiate Programming Contest
Asia Regional Contest, Yokohama, 2019-11-17

Problem H

Parentheses Editor

Time Limit: 2 seconds

You are working with a strange text editor for texts consisting only of open and close parentheses.
The editor accepts the following three keys as editing commands to modify the text kept in it.
e ‘(’ appends an open parenthesis (‘(’) to the end of the text.
e )’ appends a close parenthesis (‘) ?) to the end of the text.

e ‘-’ removes the last character of the text.
A balanced string is one of the following.

° “()77
e “(X)” where X is a balanced string

e “XY” where both X and Y are balanced strings

Initially, the editor keeps an empty text. You are interested in the number of balanced substrings
in the text kept in the editor after each of your key command inputs. Note that, for the same
balanced substring occurring twice or more, their occurrences should be counted separately.
Also note that, when some balanced substrings are inside a balanced substring, both the inner
and outer balanced substrings should be counted.

Input

The input consists of a single test case given in a line containing a number of characters, each of
which is a command key to the editor, that is, either ‘C’, ©)’, or ‘~’. The number of characters
does not exceed 200000. They represent a key input sequence to the editor.

It is guaranteed that no ‘-’ command comes when the text is empty.

Output

Print the numbers of balanced substrings in the text kept in the editor after each of the key
command inputs are applied, each in one line. Thus, the number of output lines should be the
same as the number of characters in the input line.

21



Sample Input 1 Sample Output 1

(00—

NP, WP WL, =, OO

Sample Input 2 Sample Output 2

O-—-00--—000)

> D WP P OO0 00OO0OFR,r P, WERLRE,OOO®RDO

22




ICPC — International Collegiate Programming Contest
Asia Regional Contest, Yokohama, 2019-11-17

Problem I
One-Way Conveyors

Time Limit: 2 seconds

You are working at a factory manufacturing many different products. Products have to be
processed on a number of different machine tools. Machine shops with these machines are
connected with conveyor lines to exchange unfinished products. Each unfinished product is
transferred from a machine shop to another through one or more of these conveyors.

As the orders of the processes required are not the same for different types of products, the
conveyor lines are currently operated in two-way. This may induce inefficiency as conveyors have
to be completely emptied before switching their directions. Kaizen (efficiency improvements)
may be found here!

Adding more conveyors is too costly. If all the required transfers are possible with currently in-
stalled conveyors operating in fixed directions, no additional costs are required. All the required
transfers, from which machine shop to which, are listed at hand. You want to know whether
all the required transfers can be enabled with all the conveyors operated in one-way, and if yes,
directions of the conveyor lines enabling it.

Input
The input consists of a single test case of the following format.

nm
1Y

Tm Ym

k
aq b1

ay by

The first line contains two integers n (2 < n < 10000) and m (1 < m < 100000), the number
of machine shops and the number of conveyors, respectively. Machine shops are numbered 1
through n. Each of the following m lines contains two integers x; and y; (1 < z; < y; < n),
meaning that the i-th conveyor connects machine shops z; and ;. At most one conveyor
is installed between any two machine shops. It is guaranteed that any two machine shops are
connected through one or more conveyors. The next line contains an integer k£ (1 < & < 100000),
which indicates the number of required transfers from a machine shop to another. Each of the
following k lines contains two integers a; and b; (1 < a; <n, 1 <b; < n, a; # b;), meaning that
transfer from the machine shop a; to the machine shop b; is required. Either a; # a; or b; # b;
holds for i # j.

23



Output

Output “No” if it is impossible to enable all the required transfers when all the conveyors are
operated in one-way. Otherwise, output “Yes” in a line first, followed by m lines each of which
describes the directions of the conveyors. All the required transfers should be possible with
the conveyor lines operated in these directions. Each direction should be described as a pair of
the machine shop numbers separated by a space, with the start shop number on the left and
the end shop number on the right. The order of these m lines do not matter as far as all the
conveyors are specified without duplicates or omissions. If there are multiple feasible direction
assignments, whichever is fine.

Sample Input 1 Sample Output 1
2 Yes

2 12
3

N m = WN P~ W
w

Sample Input 2 Sample Output 2

2 No
2
3

w

WHFE, P, WN P W

Sample Input 3 Sample Output 3
4 Yes

2
3
1
4

W b W N
= W N -

N P WL D WN

W WNNRFE P, R, NN 22D

24



ICPC — International Collegiate Programming Contest
Asia Regional Contest, Yokohama, 2019-11-17

Problem J
Fun Region

Time Limit: 2 seconds

Dr. Ciel lives in a planar island with a polygonal coastline. She loves strolling on the island
along spiral paths. Here, a path is called spiral if both of the following are satisfied.

e The path is a simple planar polyline with no self-intersections.

e At all of its vertices, the line segment directions turn clockwise.

Four paths are depicted below. Circle markers represent the departure points, and arrow heads
represent the destinations of paths. Among the paths, only the leftmost is spiral.

= X

Dr. Ciel finds a point fun if, for all of the vertices of the island’s coastline, there exists a spiral
path that starts from the point, ends at the vertex, and does not cross the coastline. Here, the
spiral path may touch or overlap the coastline.

In the following figure, the outer polygon represents a coastline. The point % is fun, while the
point X is not fun. Dotted polylines starting from % are valid spiral paths that end at coastline
vertices.

25



Figure J.1. Samples 1, 2, and 3.

We can prove that the set of all the fun points forms a (possibly empty) connected region, which
we call the fun region. Given the coastline, your task is to write a program that computes the
area size of the fun region.

Figure J.1 visualizes the three samples given below. The outer polygons correspond to the
island’s coastlines. The fun regions are shown as the gray areas.

Input
The input consists of a single test case of the following format.

n
T1 Y

LTn Yn

n is the number of vertices of the polygon that represents the coastline (3 < n < 2000). Each
of the following n lines has two integers z; and y;, which give the coordinates (x;,y;) of the i-th
vertex of the polygon, in counterclockwise order. x; and y; are between 0 and 10000, inclusive.
Here, the x-axis of the coordinate system directs right and the y-axis directs up. The polygon is
simple, that is, it does not intersect nor touch itself. Note that the polygon may be non-convex.
It is guaranteed that the inner angle of each vertex is not exactly 180 degrees.

Output

Output the area of the fun region in one line. Absolute or relative errors less than 10~7 are
permissible.

Sample Input 1 Sample Output 1

4 300.00
10 0
20 10
10 30
0 10

26



Sample Input 2 Sample Output 2

10 12658.3130191
145 269
299 271
343 193
183 139
408 181
356 324
176 327
147 404
334 434
102 424

Sample Input 3 Sample Output 3

6 0.0
144 401
297 322
114 282
372 178
197 271
368 305

27




ICPC — International Collegiate Programming Contest
Asia Regional Contest, Yokohama, 2019-11-17

Problem K
Draw in Straight Lines

Time Limit: 3 seconds

You plan to draw a black-and-white painting on a rectangular canvas. The painting will be a
grid array of pixels, either black or white. You can paint black or white lines or dots on the
initially white canvas.

You can apply a sequence of the following two operations in any order.

e Painting pixels on a horizontal or vertical line segment, single pixel wide and two or more
pixel long, either black or white. This operation has a cost proportional to the length (the
number of pixels) of the line segment multiplied by a specified coefficient in addition to a
specified constant cost.

e Painting a single pixel, either black or white. This operation has a specified constant cost.

You can overpaint already painted pixels as long as the following conditions are satisfied.

e The pixel has been painted at most once before. Overpainting a pixel too many times
results in too thick layers of inks, making the picture look ugly. Note that painting a pixel
with the same color is also counted as overpainting. For instance, if you have painted a
pixel with black twice, you can paint it neither black nor white anymore.

e The pixel once painted white should not be overpainted with the black ink. As the white
ink takes very long to dry, overpainting the same pixel black would make the pixel gray,
rather than black. The reverse, that is, painting white over a pixel already painted black,
has no problem.

Your task is to compute the minimum total cost to draw the specified image.

Input

The input consists of a single test case. The first line contains five integers n, m, a, b, and c,
where n (1 < n < 40) and m (1 < m < 40) are the height and the width of the canvas in the
number of pixels, and a (0 < a < 40), b (0 < b < 40), and ¢ (0 < ¢ < 40) are constants defining
painting costs as follows. Painting a line segment of length ¢ costs af 4+ b and painting a single
pixel costs c¢. These three constants satisfy ¢ < a + b.

The next n lines show the black-and-white image you want to draw. Each of the lines contains
a string of length m. The j-th character of the i-th string is ‘#’ if the color of the pixel in the
i-th row and the j-th column is to be black, and it is ‘. if the color is to be white.

28



Output

Output the minimum cost.

Sample Input 1

Sample Output 1

33123
JH#.
#it#
N

10

Sample Input 2

Sample Output 2

27011
##H# . HHH
#it# . HHH

3

Sample Input 3

Sample Output 3

55144

24

Sample Input 4

Sample Output 4

7 24 1 10 10
HEH . CHEH . CHEHHE . CHEE
R SN % ST A A

H OH H H
H*

3 1
H#+ .
H*
=
=+
H*

HHEH. O HEHLHL L ###.

256

29




