## Commentaries on Problems

## JUDGE TEAM

 ICPC 2018 ASIA YOKOHAMA REGIONAL
## Estimated Order of Difficulty

|  | $\leftarrow$ Easiest |  |  |  |  |  | Hardest $\rightarrow$ |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Coding | C | A | B | G | D | K | E | H | I | J | F |
| Analysis | A | B | C | G | D | K | E | F | J | H | I |

## Predicted \# of Correct Answers



## Estimated vs. Solved in 4.5 hours



Estimated vs. Solved in 4.5 h .


## \# problems solved \& \# teams



# A:Digits Are Not Just Characters 

## Story

ls command lists file names in lexicographical order with ASCII codes:
\$ ls
file10 file20 file3

But digits are not just characters.
Your task is to compare file names with numbers interpreting digit sequences as numerical values.

## Solution

1. Tokenize given file names into letter items and number items.
2. Compare sequences of items lexicographically.
Be aware of the end of file names:
The end of file name comes before both of letter item and number item.
This problem was solved by all of the teams.


## Problem:

Compute how many steps are required to evacuate all the passengers from a vehicle.

- The vehicle has an aisle in the center with rows of seats on its both side.
- The exit is at the rear end of the aisle.
- In one step, passengers on a seat can move sideways to an adjacent seat or to the aisle if on the aisle seat.
- Passengers on the aisle can move one row towards the exit, or get off from the vehicle if already at the rear end.



Passengers on aisle seats can move to the aisle


Other passengers can move to the adjacent seat
Passengers already on the aisle

can move toward the exit by one row


The passengers at the rear end of the aisle



Emptiedpositions become available in the same step


## A Reversed Problem

- Passengers will get on the car, one at a time, and walk up to their reserved seats
- Their possible moves are the reverses of the original problem

How many steps are required for all passengers to reach their reserved seats?

The answer should be the same as the original problem.
You don't have to take care of interferences!

## Solving the Reversed Problem

- Let $\boldsymbol{d}_{\boldsymbol{p}}$ be the distance of the seat from the door for passenger $\boldsymbol{p}$
- Let $\boldsymbol{s}_{\boldsymbol{p}}$ be the step number in which passenger $\boldsymbol{p}$ gets on the car
- The step in which passenger $p$ reaches the seat is $d_{p}+s_{p}$

To minimize the total time $\max _{p}\left(d_{p}+s_{p}\right)$, passengers with the larger $\boldsymbol{d}_{\boldsymbol{p}}$ should be given the smaller $\boldsymbol{s}_{\boldsymbol{p}}$

1. Compute $d_{p}: O(n)$
2. Sort them to decide desired $s_{p}: O(n \log n) \leftarrow$ dominant
3. Find $\max _{p}\left(d_{p}+s_{p}\right): O(n)$

Step-wise simulation is not required!

# B:Arithmetic Progressions 

## Problem Description

Find the longest Arithmetic Progressions from given set.


Arithmetic Progressions
$\left.\begin{array}{l}0,3,6,9 \\ 9,6,3,0\end{array}\right\}$ the longest ones
1, 5, 9
9, 5, 1
... and trivial ones

## Solution



- Sort the elements in the set
- For each $i$ and $j$, remember $k$ such that $v_{k}=v_{j}+\left(v_{j}-v_{i}\right)$
- This table can be made in $O\left(\mathrm{n}^{2}\right)$.
- Start i and k from neighbors of j.

Check the length of the arithmetic progressions.

## Solution



- Sort the elements in the set
- For each $i$ and $j$, remember $k$ such that $v_{k}=v_{j}+\left(v_{j}-v_{i}\right)$
- This table can be made in $O\left(\mathrm{n}^{2}\right)$.
- Start i and k from neighbors of $j$.

Check the length of the arithmetic progressions.

## Solution



- Sort the elements in the set
- For each $i$ and $j$, remember $k$ such that $v_{k}=v_{j}+\left(v_{j}-v_{i}\right)$
- This table can be made in $O\left(\mathrm{n}^{2}\right)$.
- Start i and k from neighbors of $j$.

Check the length of the arithmetic progressions.

## Solution



- Sort the elements in the set
- For each $i$ and $j$, remember $k$ such that $v_{k}=v_{j}+\left(v_{j}-v_{i}\right)$
- This table can be made in $O\left(\mathrm{n}^{2}\right)$.
- Start i and k from neighbors of $j$.

Check the length of the arithmetic progressions.

## Solution



- Sort the elements in the set
- For each $i$ and $j$, remember $k$ such that $v_{k}=v_{j}+\left(v_{j}-v_{i}\right)$
- This table can be made in $O\left(\mathrm{n}^{2}\right)$.
- Start i and k from neighbors of $j$.

Check the length of the arithmetic progressions.

## Solution



- Sort the elements in the set
- For each $i$ and $j$, remember $k$ such that $v_{k}=v_{j}+\left(v_{j}-v_{i}\right)$
- This table can be made in $O\left(\mathrm{n}^{2}\right)$.
- Start i and k from neighbors of $j$.

Check the length of the arithmetic progressions.

## Solution



- Sort the elements in the set
-For each $i$ and $j$, remember $k$ such that $v_{k}=v_{j}+\left(v_{j}-v_{i}\right)$
- This table can be made in $O\left(\mathrm{n}^{2}\right)$.
- Start i and k from neighbors of $j$.

Check the length of the arithmetic progressions.

## Solution



- Sort the elements in the set
- For each $i$ and $j$, remember $k$ such that $v_{k}=v_{j}+\left(v_{j}-v_{i}\right)$
- This table can be made in $O\left(\mathrm{n}^{2}\right)$.
- Start i and k from neighbors of j.

Check the length of the arithmetic progressions.

# G: What Goes Up Must Come Down 

## Problem

- Given an integer sequence
- Swap adjacent elements some times
- Rearrange that first some elements are increasing order, latter are decreasing order.
$1 \leqq 4 \leqq 5 \geqq 3 \geqq 2$
- Find minimum number of swaps


## Solution

- Binary indexed tree
$\mathrm{O}(\log \mathrm{n})$ add : data[i] += v
O(log $n$ ) sum : data[i..j]
- Initially every index has 1



## Solution

- Look at the smallest element
- Move it to leftmost or rightmost side answer $+=\min (2,3)$
- Deactivate add(index, -1 )



## Solution

- Look at the second smallest element - Move it to leftmost or rightmost side answer $+=\min (3,1)$



## Conclusion

- Count left large values and right large values each indexes
- Add small one to the answer
- Use binary indexed tree (or segment tree)
- ※ Be careful to update when the sequence contains duplicate entries.

D: Shortest Common NonSubsequence

## Background: Longest Common Subsequence

$S$ is a subsequence of $P$ :

| P | 0 |  |  | 1 | 0 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S |  |  |  | 1 |  |  |

## Longest Common Subsequence Problem:

- Input: two sequences $A$ and $B$
- Output: longest common subsequence


## Problem

## Shortest Common Non-Subsequence Problem:

- Input: two sequences (consisting of 0 and 1)
- Output: shortest sequence (consisting of 0 and 1 ) that is a subsequence of neither of two sequences

| 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 0 |

$$
\begin{array}{|l|l|l|}
\hline 0 & 0 & 1 \\
\hline
\end{array}
$$

## Solution --- Dynamic Programming

## Observation

A SNCS of $A[i, n]$ and $B[j, m]$ is obtained by

- adding 0 to a SNCS of $A[i 0, n]$ and $B[j 0, m]$ or
- adding 1 to a SNCS of A[i1,n] and B[j1,m]
where $\mathrm{i} 0, \mathrm{j} 0$ are the indices of the next appeared 0 , and $\mathrm{i} 1, \mathrm{j} 1$ are the indices of the next appeared 1.

| 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 0 |
| 0 0 1 |  |  |  |



## Solution Recovery

We compute $\operatorname{SNCS}(i, j)$ for all $i$ and $j$ by DP
To obtain the lexicographically smallest solution, we use the following standard technique:

If SNCS(i,j) = SNCS(i0, j0) + 1, there is a solution that starts from 0
Otherwise, the solution must start from 1

## E: Eulerian Flight

## Tour

## [Problem]

Given an undirected simple graph,

make it Eulerian by adding edges!

## Eulerian =

Have a cycle visiting all nodes, using all edges exactly once each


## Eulerian =

Have a cycle visiting all nodes, using all edges exactly once each


## [Famous Fact]

Eulerian $\Leftrightarrow$ Connected and all nodes have even degree

## [Solution]

1. Add edges and make all nodes even-degree
2. Then, add more edges to make it connected

## [Step 1: Even-Degree]

## Approach 1 : Linear Equations in mod 2

* Edge Candidate = Variable (1: use, 0: not)
* Node = Equation

[Step 1: Even-Degree]


## Approach 2 : Graph Theoretic

Think about a spanning forest of the completement graph

for $v$ in bottom-up order in the spanning tree: if "deg(v) in original graph" is odd:

Use the edge (v, parent(v)) and update deg(v)

## [Step 2: Connected]

If the previous step generated...

- 1 connected component $\rightarrow$ Eulerian! Solved!
- 3 or more components $\rightarrow$ Connect by a cycle

- 2 components, each have $2+$ nodes $\rightarrow$ cycle
- 2 components, ...


## [Step 2: Connected]

## The only one exceptional case:



Input was already ( $\mathrm{K}_{\text {odd }}+$ point )
For all other cases, multiple connected components
can be made into one big one in some way.

K: Sixth Sense

## Problem

- Play a two-player trick-taking card game
- Each player pulls out a card in every trick
- The player pulling out a card with the larger number takes the trick
Find the best way to win the game, assuming that you know the opponent's actions



# Just to maximize the number of tricks you take is very easy 

- Sort the cards and compare one by one


It takes $O(n \log n)$ time, where $n$ is \#cards

To have the lexicographically largest ordering Is harder

- For each trick, choose the best card
- The largest among those with which you can take the maximum number of tricks

- For each candidate card, the best achievable number is computed in $O(n)$ time

To have the lexicographically largest ordering Is harder

If you can take this trick, you should

- By losing this trick, you cannot increase the total number of tricks you take
- If you cannot, you will lose the trick anyway



## To have the lexicographically

 largest ordering Is harder- You can determine whether or not the candidate number is too large Lose the trick

Take the trick


Complexity: With binary search, \#candidates is $O(\log n)$ $O(n)$ time for each candidate \#tricks is $O(n)$ and so in total $O\left(n^{2} \log n\right)$
J: Colorful Tree

## Problem Summary

Given a tree with colored vertices and a sequence of commands Command:

1. Change the color of a specified vertex
2. Ask the number of edges in the minimum connected subgraph of the tree containing all vertices of the specified color
$2 \leq n \leq 100000,1 \leq m \leq 100000$


## Efficiently keep/update subgraphs

It's difficult to compute the subgraph efficiently in each query command

An update command just changes the color of one vertex
$\rightarrow$ Remove one vertex from a subgraph and add one vertex to a subgraph

We can't keep all subgraphs as they are (The total number of vertices/edges can be huge)
Which information is needed for each subgraph and how can we update it?

## The change in an update command

Consider as a rooted tree


What happens when adding/removing a vertex?

## The change in an update command

1. The LCA (lowest common ancestor) of the subgraph changes


The distance from the changed vertex to the original LCA is added (adding) the new LCA is subtracted (removing)

## The change in an update command

2. The LCA of the subgraph doesn't change


The distance from the changed vertex to a vertex is added/subtracted Where?
The closest LCA of the changed vertex and some vertex

## Efficiently keep/update subgraphs

What we should keep for each color

1. The current number of edges
2. The set of vertices having the color
3. The LCA of the subgraph

4. Calculate the LCA $\rightarrow O(\log n)$ when adding a vertex

$$
\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n}) \text { when removing a vertex }
$$

2. Find the closest LCA of the changed vertex and some vertex $\boldsymbol{O}(\boldsymbol{n} \boldsymbol{\operatorname { l o g }} \boldsymbol{n})$

The total time complexity is $\boldsymbol{O}((m+n) n \log n)$

## Pre-order numbering

Assign a number to each vertex by pre-order (or in/post-order)


Calculate the LCA of the subgraph
$\rightarrow$ The LCA of the minimum number vertex and maximum number vertex

## Pre-order numbering

Assign a number to each vertex by pre-order (or in/post-order)


Find the closest LCA of the changed vertex and some vertex
$\rightarrow$ The LCA of the changed vertex and the maximum number vertex within smaller number vertices
or the LCA of the changed vertex and the minimum number vertex within larger number vertices

## Summary

What we should keep for each color

1. The current number of edges
2. The set of vertices having the color with pre-order (or in/post-order) numbers
3. The LCA of the subgraph

4. Calculate the LCA $\rightarrow O(\log n)$
5. Find the closest LCA of the changed vertex and some vertex $\rightarrow O(\log n)$

The total time complexity is $\boldsymbol{O}((m+n) \log n)$

## I: Ranks

## Problem

You're given an $n \times m$ matrix $A$ over $F_{2}$. For all indices $(i, j)$, determine if flipping $(i, j)$ entry of $A$ increases/decreases/keeps the rank of $A$.

Constraints: Dimensions $n, m<=1000$

## Rank of Matrix?

Gaussian elimination (GE) with bit-parallel:
$\circ O\left(n^{2} m / b\right)$ ( $b$ : bit length)
Naively applying GE $n * m$ times:

- $O\left(n^{3} m^{2} / b\right)$ : obviously TLE

Some efficient algorithm is required here.

## For Last Column (1/3)

Consider from simple case: $j=m$.

- Assume that we computed $r$ (the rank of $A$ ).
- We can compute $r^{i, m}$ by GE for $A+E^{i, m}$, where $E^{i, j}$ is matrix with $(i, j)$ entry 1 and other ones 0.
- $O\left(n^{3} m / b\right)$ )
- But we can speed up this computation.



## For Last Column (2/3)

- Let $A_{m}$ be the $m$-th column vector.
- Let $\delta_{i}$ be a vector with only the $i$-th element 1.

Now, let $X:=\left[\left(A_{m}+\delta_{1}\right) \ldots\left(A_{m}+\delta_{n}\right)\right]$. To compute $r^{i, m}$ for all $i$,

- Suppose now we have $[A \mid X]$ (concatenated matrix).
- Perform GE from first to the ( $m-1$ )-th column.
- Then, for each $i$, check if the additional GE to $(m+i)$-th column increases the rank. $\rightarrow$ This works in $O\left(n^{2} m / b\right)$. ()



## For Last Column (3/3)

Instead of $[A \mid X]$, we may do the same thing for $[A \mid I]$.

- Any row operations can be expressed as an $n \times n$ matrix $S$.
- Applying $S$ to some matrix $B$ changes it to $S \cdot B$.
- For any $S,((m+i)$-th column of $S \cdot[A \mid X])=S *\left(A_{m}+\delta_{i}\right)$
$=(m-$ th $+(m+i)$-th column $)$ of $S \cdot[A \mid I])$.
So, perform GE by the end of $m$-th column, then check ( $m+i$ )-th column.



## General Case (1/3)

Now we want to compute $r^{i, j}$ for any ( $i, j$ ).
We consider GE for [A | I]. Now let us assume that

- We perform GE by the end of $m$-th column.
- We also perform back substitution: We deleted as many 1's in $A$ as possible.
Now the A's part will look like this (echelon form).
01010001000
00111010000
00000100110
00000011111
00000000000
00000000000


## General Case (2/3)

When two or more 1's are lined up in the j-th column in echelon form:

- Suppose that we move the j-th column to the end of columns.
- The matrix is still echelon form.
- So, it suffices to look the l's part to compute $r^{i, j}$.


$$
\begin{array}{r}
01000010001 \\
00110100001 \\
00001001100 \\
00000111110 \\
00000000000 \\
00000000000
\end{array}
$$

## General Case (3/3)

When only one 1 is lined up in the j-th column:

- Again, suppose we move the j-th to the end.
- Now the matrix is not echelon form.
- Suppose that we swap rows and then move columns.
- This results in echelon form, since we performed back substitution.
- Again, it suffices to look the l's part to compute rij.
01010001000
00111010000
00000100110
00000011111
0000000000
00000000000
$\left.\sqrt{00100010001} \begin{array}{|}01110100000 \\ 00001001100 \\ 00000111110 \\ 00000000000 \\ 00000000000\end{array}\right]$

| 01110100000 |
| :--- |
| 00001001100 |
| 00000111110 |
| 00100010001 |
| 0000000000 |
| 00000000000 |$|-$

## Conclusion

Time complexity: $O\left(n^{2}(n+m) / b\right)$

There're other solutions.

- Do similar thing through LR decomposition
- $O\left(n^{3} \log n / b\right)$ solution (simpler?)
H: Four-Coloring


## Find a 4-coloring of a planar graph.



## Special Constraints

- Edge $\Rightarrow$ Straight line segment
- Inclinations are multiples of $45^{\circ}$



## Key Observation

## Bottom right vertex $s$ has degree $\leq 4$



## Algorithm

## Lexicographically sort the vertices



## Algorithm

Extend the 4 -coloring of $G[\{1, \ldots, i\}]$ to a 4-coloring of $G[\{1, \ldots, i+1\}]$.


## Case 1

$N(s)$ uses at most 3 colors
$\Rightarrow$ use the remaining color


Case 2
$N(s)$ uses 4 colors
$\Rightarrow$ try to change green to blue


Case 2a
No green-blue alternating paths
$\Rightarrow$ swap green and blue


Case 2b
A green-blue alternating path exists
$\Rightarrow$ no red-orange alternating paths


Problem F:
Fair Chocolate-
Cutting

## Problem Summary

Given a convex polygon,
compute the minimum and maximum lengths of line segments that divide the polygon into two equal areas.

minimum length

maximum length

minimum length

maximum length

## Observation to Solution (1)

The length of line segment gets (local) maximum when either (or both) of end points is on a vertex.


## Observation to Solution (2)

The length of line segment gets (local) minimum when (a) either (or both) of end points is on a vertex, or
(b) the line segment is perpendicular to the angle bisector line*.


* Proof sketch: consider when the differential of length is equal to 0.


## Solution: $O(n) \quad$ ( $O\left(n^{2}\right)$ may do)

1. (Initialization) Choose a vertex $P$ and find a vertex $Q$.
$\checkmark$ area(P...Q) <= total-area/2 \&\& area(P...next(Q)) > total-area/2
2. Repeat following procedure until $P$ moves around 2a. (segment 1) find a point $R$ on edge $Q--n e x t(Q)$ area $(\mathrm{P} \ldots \mathrm{R})=$ total-area $/ 2 \rightarrow$ Update max and min


## Solution: O(n)

2b. (segment 2) find point $S$ on edge $P--n e x t(P)$ and point $T$ on edge Q--next(Q)
$\checkmark$ area(S...T) $=$ total-area/2
$\checkmark$ S--T is perpendicular to bisector(P--next(P), next(Q)--Q)

- Solve an equation or use bisection method $\rightarrow$ update min



## Judge's Testcase Gallery

$\mathrm{n}=2171$
Min = 15277.342
$\operatorname{Max}=76840.956$
$\mathrm{n}=1360$
$\mathrm{Min}=15205.205$
Max $=15252.000$

$$
n=4260
$$

$$
\text { Min }=40456.550
$$

$$
\operatorname{Max}=122057.944
$$

## What happened in the last 30 minutes?

## That is the question.

