
Commentaries on
Problems

JUDGE TEAM
ICPC 2019 ASIA YOKOHAMA REGIONAL

Predicted # of Correct Answers

Estimated vs. Solved @Freeze

#Solved vs #Teams @Freeze

Commentaries
Decreasing order of #solved teams
(tie-breaked by judge's estimation)

A --> B --> H --> E --> G --> I --> C --> D --> F --> K --> J

A:Fast Forwarding

Story

triples the video playing speed.3x

1/3x reduces the speed to one-third.

How quick can you fast-forward the
video to the start of your favorite scene?

Button state is checked each 1 second.

Key Observations

No need to consider pressing [1/3x] before any [3x].

3x 1/3 3x 1/3 3x 1/3

1+3+3+1+3+1 = 1+3+3+3+1+1

1+3+3+3+9+3 = 1+3+9+3+3+3
3x 1/33x 3x 1/33x

No need to consider pressing [3x] later than sooner.

Solution
No need to search all button pressing patterns!

1+3+9+27+(…+27)+(…+9)+(…+3)+(…+1)
3x 3x 3x

Greedily press [3x] for a first few seconds
(until it overruns the target scene.)

Then the timing of [1/3x] easily follows from
the remainder of the divisions by 3, 9, 27, …

1/3 1/3 1/3

B:Estimating
the Flood Risk

Story
Mr. Boat wants to know the average altitude of his land in order
to estimate the flood risk.

As no steep slopes are in his estate, he thought that it would be
enough to measure the altitudes of only limited number of sites
and approximate the altitudes of the rest based on them.

Your job is to write a program that computes total of altitudes of
all the mesh-divided areas.

If there are multiple possibilities, among which one that gives the
lowest average altitude should be considered.

Mr. Boat wants to know the average altitude of his land in order
to estimate the flood risk.

As no steep slopes are in his estate, he thought that it would be
enough to measure the altitudes of only limited number of sites
and approximate the altitudes of the rest based on them.

Your job is to write a program that computes total of altitudes of
all the mesh-divided areas.

If there are multiple possibilities, among which one that gives the
lowest average altitude should be considered.

If there exist one or more area in which the range of the altitude is empty,

answer "No".

Solution
The range of the altitude of each area (x, y) is the intersection of [zi - d, zi+d]

for all measured area (xi, yi) of altitude zi, where d is the Manhattan distance

between (x, y) and (xi, yi).

lower bound

upper bound

H:Parentheses
Editor

Problem
Given text editing commands
● Append (
● Append)
● Delete last character
Count the number of balanced substrings

Examples
(()) answer = 2
()() answer = 3
(()()) answer = 4

Solution
● Count the difference of the answer after

commands
● Separate with unmatching left parens
● Divide into minimal balanced strings. This is a stack

Append left paren (
stack.Push(0)

Append right paren)
stack.Pop()
stack.Top() += 1
answer += stack.Top()

Append right paren), no sep
When there is no separator, the size of stack is one.
stack.Top() = 0

Delete Last Character

● Append commands run in O(1)
● Rollback also runs in O(1)

x = stack.Pop()
stack.Top() += 1
answer += stack.Top()

stack.Push(x)
stack.Top() -= 1
answer -= stack.Top()

Problem E:
Reordering the Documents

Height limit

Reorder documents via two extra piles

１

２

３

４

５

６

１ ３

４２

６ ５

６

５

４

３

２

１
Documents with larger seq. num.

should be piled above
to allow moving them to the

document box in order

Temporary Piles

The document with the largest seq# moved so far (M) must be
on top for the temporary piles to be properly ordered

⚫ If the next document to move has # less than M, the
document should not be placed upon M. No choice here.

⚫ If the next document to move has # larger than M, the
document can be moved to either of the temp. piles.

The height limit should be respected in both cases.

２

６

５

１ ３

４

２

２ ４

５
Height limit

５６

⚫ If any remaining documents have # less than both tops of the
temporary piles, they can never be handled properly.

⚫The min. seq. # below each doc can be computed beforehand
with O(n).

⚫With this info, moves leading to a problem in future can be
avoided beforehand.

２

５

６ １

３

４

４

１(2)

２(6)

３(2)

４(2)

５(2)

６(∞)

４

Solution: O(mn)
⚫For docs on the pile, compute the min. doc # below: O(n)

⚫Build a table t of the different possible ways to move docs,
indexed by the height of the pile with the larger # doc on top.
Initiate it as [0]=1 and other elements 0: O(m)

⚫For each doc, from the top, update the table: O(mn)
➢ If its # is less than the largest so far, no changes are needed

➢ If it is larger, it may be placed on either of the temp. piles.
Initiate a new table n with all its items 0
For i = 1..m,

◦ n[i] += t[i] ; move to the pile with smaller top

◦ n[i+1] += t[k-i] ; move to the pile with larger top, k is # docs so far

➢ Copy n to t

Pile height constraints should be checked during the operation

G:Ambiguous
Encoding

Problem Description

Code Set

110

01

1

100

Find the shortest length of ambiguous binary sequences
made from the given code set.

Characters
to encode

‘D’

‘B’

‘A’

‘C’

. . .

. . .

. . .

. . .

“AAB” -> 1 1 01

Encoding of
String to Binary Seq.

“DA” -> 110 1

Ambiguous!
(You can’t decode

this correctly)
1101

?

?

Naïve Way to Find Amb. Seq.

•Start from a pair of codes s.t. one is a prefix of the other.

Code Set

0111

01

001

11010

01

0111

01

0111

Code Set

0111

01

001

11010

Naïve Way to Find Amb. Seq.

•Start from a pair of codes s.t. one is a prefix of the other.

•Put a code whose prefix is the remainder, or

Code Set

0111

01

001

11010

01

011111010

Code Set

0111

01

001

11010

11010

Naïve Way to Find Amb. Seq.

•Start from a pair of codes s.t. one is a prefix of the other.

•Put a code whose prefix is the remainder, or

Put a code that is a prefix of the remainder.

Code Set

0111

01

001

11010

01

0111
01 11010

Code Set

0111

01

001

11010 01

Naïve Way to Find Amb. Seq.

•Start from a pair of codes s.t. one is a prefix of the other.

•Put a code whose prefix is the remainder, or

Put a code that is a prefix of the remainder.

•Done when the remainder is an empty sequence.

Code Set

0111

01

001

11010

01

011101

11010
001
01 Found an ambiguous seq.

Code Set

0111

01

001

11010 001

01

Observation

01

0111

11010

•Given an intermediate state of the naïve process,

the shortest tail to the even length depends only on the remainder.

•So, we can do DP on remainders
• You need to remember only the shortest seq. to the remainder

01

011011

1011010

0101100

1100

0101100

1100

Solution: Shortest Path Search
•V = Possible remainders :: |V| = O(216)

•E = Transition by code :: |E| = O(16 * n + 16 * 216)
• (R1, R2) in E  there exists a code C such that

C = R1 + R2 (at most 16 for each code), or
R1 = C + R2 (at most 16 for each remainder)

•Length = min(|R1|, |C|)

•Start = Remainders of all possible pairs of the given codes

•Goal = Empty remainder

•No path to the goal  no ambiguous sequence exists.

•So, you can use Dijkstra algorithm to solve this prob. in time

I:One-Way Conveyors

Problem Summary
Given an undirected graph and necessary moves
Make the graph directed while keeping all the necessary moves

2 ≤ 𝑛 ≤ 10000, 1 ≤ 𝑚 ≤ 100000, 1 ≤ 𝑘 ≤ 100000

Observation
If an edge is always passed in two moves with different directions,
it’s definitely impossible to make the graph directed

If an edge is a bridge, it’s passed in any possible paths for the move

Directions of all bridges are determined uniquely (or not relevant)

Decompose graph by bridges
Decompose the graph by bridges

The graph is a tree
Every vertex is a 2-edge-connected graph
Every edge is a bridge

2-edge connected graph
Is it possible to make a 2-edge connected graph directed
while keeping all the moves?

Robbins’ theorem

It’s possible to make a 2-edge connected graph directed
that has a path from every vertex to every other vertex

Always Yes!!

2-edge connected graph
One easy way to assign directions of edges

Perform a depth-first search
Forward edges are directed from the top to the bottom
Back edges are directed from the bottom to the top

Directions of bridges
The graph is a tree now

Each move is divided to two moves by its lowest common ancestor

Directions of bridges
For each upward (downward) move, add +1 to its edges

If an edge has a value, the edge should be upward (downward)

This can be efficiently done by adding +1/-1 to endpoints
and traversing the tree with summing the values

+1
+1

+1

+1

+1

-1

-1

Summary
1. Decompose the graph by bridges

2. Assign directions of 2-edge connected graphs

3. Divide moves on the tree to upward/downward moves by LCA

4. Validate and assign directions of the tree

1 and 2 can be done together by a depth-first search in 𝑂(𝑛 + 𝑚)

3 can be done in 𝑂(𝑛 + 𝑘 log 𝑛)

4 can be done in 𝑂(𝑛)

The total time complexity is 𝑶(𝒎 + 𝒏 + 𝒌 𝐥𝐨𝐠 𝒏)

Appendix
It’s also interesting to consider how to validate answers efficiently

Given a directed graph and necessary moves
Check if all the moves are actually valid

C:Wall Painting

Problem Description
i-th robot paints j (in [li, ri])-th panel in color ci, when activated.

The aesthetic value of each panel is defined as follows:

➢Left unpained: zero score

➢Painted in 1 color: positive score (+x)

➢Painted in 2+ colors: negative score (-y)

Maximize the sum of aesthetic values.

In case of x=7 and y=2, the sum of values is 61.

Observation
The following cases are ignorable. (There is a redundant range)

- There is a range overlapped by another range.

- There is a panel which is painted 3+ times.

Solution
First, sort all robots increasing based on ri.

Let dp[i] be the maximum sum of aesthetic values when the right most
activated robot is i-th robot.

dp[i] = max{

max_[j s.t. j < i and rj < li] dp[j] + (ri – li) * x

max_[j s.t. j < i, lj<li≤rj and ci=cj] dp[j] + (ri – rj) * x

max_[j s.t. j < i, lj<li≤rj and ci≠cj] dp[j] + (ri – rj) * x – (rj – li) * y

}

Solution
Let dp[c][i] be the maximum values, when the right most activated robot is i-th robot
and their color is c. This expression can be transformed as follows:

dp[c][i] = {

-∞ (if color ≠ ci)

max{

(max_[j, c’ s.t. j < i and rj < li], c’ ∈ {1, 2, 3}] dp[c’][j]) + (ri – li) * x

(max_[j s.t. j < i, lj<li≤rj] dp[c][j] - rj * x) + ri * x

(max_[j s.t. j < i, lj<li≤rj] dp[(c+1)%3][j] - rj * (x + y)) + (ri * x + li * y)

(max_[j s.t. j < i, lj<li≤rj] dp[(c+2)%3][j] - rj * (x + y)) + (ri * x + li * y)

} (otherwise)

}

We can speed up the calculation by using RMQs!

D:Twin Trees Bros.

Problem D
Twin Trees
Bros.

A C M I C P C 2 0 1 9
YO KO H A MA

How to check whether two trees are twin or not. →
Translate

Find a leaf node of a tree.

Translate the leaf node to the origin point (0,0,0).

Rotate the edge between the leaf node and its parent around z-axis onto yz-
plane.

Rotate the parent node around x-axis onto z-axis.

(Optional) Rotate an ancestor node around z-axis onto yz-plane.

(1) Find a leaf node of the tree

x

z

y

leaf
node

ex

ey

ez

(2) Translate the tree so that the leaf node moves to
the origin point.

x

z

y
ex

ey

ez

leaf
node

(3) Rotate the tree around z-axis so that the parent
node moves onto the yz-plane.

x

x

z

y

parent
node

x1

y1

(4) Rotate the tree around x-axis so that the parent
node moves onto the z-axis.

x

z

y

parent
node

leaf
node

(5) Scale the tree so that the length of edge between
the leaf and parent nodes is 1.

x

z

y

1

parent
node

leaf
node

parent
node

(6) (Optional) Rotate the tree around z-axis an
ancestor node moves onto yz-plane.

x

z

y

ancestor
node

leaf
node

parent
node

(7) For each leaf node of T, transform T and compare
it with S.

x

z

y

Tree S

x

z

y

x

z

y

x

z

y

Tree T

x

z

y

Compare

Transform

Transformed Tree T

twin

Thank you very much for your attention.

F:Halting Problem

Problem Summary
Solve the Halting problem of the following program.

The program has two variables x, i.

➢In the initialization, set x = x0 and i = 1

➢(an execution step) When i < N + 1,
➢if x is equal to ai, then set x = x + bi and i = ci,

➢otherwise, set x = x + di and i = ei.

➢When i becomes N + 1, the program terminates.

➢For given x0, a, b, c, d, determine whether the program halts or not.
➢If it halts, compute how many steps are executed.

∧_∧ ババババ
（ ・ω・)=つ≡つ
（っ ≡つ=つ
`/)

Example
Sample 1 (N=2)

1 2 3

x = 0
i = 1

x is 5?

x = x + 1

x = x + 1

x is 10?

x = x + 1

x = x + 2

true

false

Example
Sample 1 (N=2)

1 2 3

x = 1
i = 1

x is 5?

x = x + 1

x = x + 1

x is 10?

x = x + 1

x = x + 2

true

false

Example
Sample 1 (N=2)

1 2 3

x = 5
i = 1

x is 5?

x = x + 1

x = x + 1

x is 10?

x = x + 1

x = x + 2

true

false

Example
Sample 1 (N=2)

1 2 3

x = 6
i = 2

x is 5?

x = x + 1

x = x + 1

x is 10?

x = x + 1

x = x + 2

true

false

Example
Sample 1 (N=2)

1 2 3

x = 12
i = 3

x is 5?

x = x + 1

x = x + 1

x is 10?

x = x + 1

x = x + 2

true

false

The program halts!
The number of executed
steps is 9.

Solution (Graph)
➢Make a graph
➢vertex = state i (1, 2, 3, …, N+1)

➢edge = false part

➢This graph has at most one loop
in each connected component.
➢outdegree = 1 for every vertices

Solution (query)
➢(query) given (x, i), find the nearest vertex
where the condition is true.
➢If the same condition becomes true twice,

the program does not halt.

➢Remove one edge in the loop.
➢one tree + one loop

➢Divide into two problems
➢in the tree

➢in the loop
true

now

find here

Solution (Loop part)
➢Fix a vertex v0(e.g. the root of the tree).

➢x become x + L after one loop.

➢Reduction to v0

➢The condition x == au at u

➢⇔ x == a’u at v0

➢(in one loop)

➢Make a table and do binary search here.
➢Table[a’u mod L] := {a’u: u is a vertex in the loop}

➢O(log(N)) for each query
v0

x is au?

u

x is a’u?

Solution (Tree part)
➢The idea is the same as the loop part.

➢There are two solutions of O(Nlog(N)):

1. Use persistent binary search tree
➢ Not difficult because the insertion operation is static in this problem.

➢ O(log(N)) for each query

2. Encode the tree to an array (like LCA ↔ RMQ)
➢ Binary search on the array.

➢ O(log(N)) for each query

K: Draw in
Straight Lines

Input Solution

Draw the specified image

Input Solution

Draw the specified image

1

Input Solution

Draw the specified image

2

Input Solution

Draw the specified image

3

Overpaint

Line-paint operation: Paint 1 × 𝑘 or 𝑘 × 1
pixels either black or white.
Cost = 𝑎𝑘 + 𝑏

1 2 … k

Single-paint operation: Paint a single pixel
either black or white.
Cost = 𝑐

Overpainting
You can overpaint black ⇒ white

Overpaint

Overpainting
You cannot overpaint white ⇒ black

1

2

Overpainting
You can overpaint a pixel at most once

1

2

3

Solution

Minimum Cut !!!!!

Key observation 1

We can assume the following order of
operations:

1. Black line-paint

2. White line-paint

3. Black/white single-paint (uniquely decided)

Key observation 2
Once we have painted a pixel horizontally, we
don’t have to paint it horizontally anymore.

8𝑎 + 2𝑏

4𝑎 + 2𝑏

>

Variables

➢ 𝑏ℎ𝑖,𝑗 ≔ [paint 𝑖, 𝑗 black horizontally]

➢ 𝑏𝑣𝑖,𝑗 ≔ 1 − [paint 𝑖, 𝑗 black vertically]

➢ 𝑤ℎ𝑖,𝑗 ≔ 1 − [paint 𝑖, 𝑗 white horizontally]

➢ 𝑤𝑣𝑖,𝑗 ≔ [paint 𝑖, 𝑗 white vertically]

condition ≔ ቊ
1 if the condition holds
0 (if the condition does not hold)

Total cost of black-horizontal-line-paints

ҧ𝑥 ≔ 1 − 𝑥

𝑥 = 1 𝑥 = 0

σ𝑢𝑣 𝑐𝑢𝑣𝑥𝑢𝑥𝑣 can be minimized by a reduction
to s-t min-cut ☺

𝑢 𝑣𝑠 𝑡

Cost of painting (𝒊, 𝒋) black

𝑐 × 𝑏𝑣𝑖,𝑗𝑏ℎ𝑖,𝑗 + ∞ × 𝑤ℎ𝑖,𝑗 + 𝑤𝑣𝑖,𝑗

cannot overpaint black over white

No black-line
⇒ black-single

Cost of painting (𝒊, 𝒋) white

𝑐 × 𝑏ℎ𝑖,𝑗𝑤𝑣𝑖,𝑗 + 𝑤ℎ𝑖,𝑗𝑏𝑣𝑖,𝑗 + ∞ × 𝑏ℎ𝑖,𝑗𝑏𝑣𝑖,𝑗

black-line & no white-line
⇒ white-single

Thanks to the observation 2, we can skip

other cases (𝑏ℎ𝑖,𝑗𝑤ℎ𝑖,𝑗 and 𝑏𝑣𝑖,𝑗𝑤𝑣𝑖,𝑗)

cannot overpaint
a pixel twice

J:Fun Region

Image source: https://en.wikipedia.org/wiki/Island#/media/File:Fernando_noronha.jpg

https://en.wikipedia.org/wiki/Island

Problem
You are given a polygon.

An inside point is fun if you can reach every vertex by some spiral path.

Fun region := All fun points.

Calculate the area of a fun region.

Fun

Not fun

Trivial Case

Convex → Fun region is entire parts

Concave?

Only one concave vertex → ?

Concave?

Fun region can be obtained by cutting the polygon
with a segment from the concave vertex.

In General

For every concave point, perform cuts.

The remained polygon is the answer.

Solution

Perform non-convex cuts from each concave point.

Each cut can be done in O(n) time.

Total complexity is O(n^2).

Correctness?

Correctness (1/7)
Point p is fun

⇔ Every vertex is reachable from p by a spiral path

⇔ p is reachable from every vertex by a ccw-spiral path

Correctness (2/7)
Point p is fun

⇔ Every vertex is reachable from p by a spiral path

⇔ p is reachable from every vertex by a ccw-spiral path

Let S(v) := {p | p is reachable from v by a ccw-spiral path}.

Fun region = ∩v:vertex S(v).

Correctness (3/7)
When vi+1 is non-concave, S(vi+1) ⊆ S(vi) holds. So,

I := {i | vi+1 is concave},

Fun region = ∩i∈I S(vi).

vi

vi+1

Correctness (4/7)
Assume that vi+1 is concave.

Take a line that passes vi and vi+1 and let q be a first contact point.

We can see that S(vi) does not include any points in a region enclosed by
vi+1q and the polygon. Why?

vi

vi+1

q

Correctness (5/7)
Suppose that there exists some ccw-spiral path from vi to X.

⚫The ccw-spiral path cannot cross segments vi+1q.

⚫If the path can reach X without crossing vi+1q, it implies there is a hole
in the input. Contradiction.

vi

vi+1

q

Correctness (6/7)
This implies that (remaining region by cuts) ⊇ (fun region).

Lastly, we will prove that “⊇” is actually “=“.

vi

vi+1

q

Correctness (7/7)
“(remaining region by cuts) = (fun region)”

Suppose that (remaining region by cuts) - (fun region) is nonempty. This
means there exists a point X and vertex vi such that X won’t be cut and X
is not in S(vi). The boundary of S(vi) is a polygon such that each edge is
either (i) some edge of original polygon or (ii) half line passing from vj to
vk where vk is concave vertex. When X is in a region enclosed by the
polygon and half line vivk, X should have been cut by a half line from vk.
This is contradiction.

vi=vj

vk

S(vi)

