
Commentaries on
Problems

JUDGE TEAM
ICPC 2018 ASIA YOKOHAMA REGIONAL

Estimated Order of Difficulty

Coding C A B G D K E H I J F

Analysis A B C G D K E F J H I

Hardest →← Easiest

Predicted # of Correct Answers

A B C D E F G H I J K

Average 58.93 45.14 38.64 22.64 11.21 6.07 20.29 5.36 4.29 3.71 16.21

Std. Dev. 2.52 7.14 8.69 10.90 5.13 4.13 8.13 6.39 4.48 2.52 9.13

0

10

20

30

40

50

60

A B C D E F G H I J K

Estimated 58.93 45.14 38.64 22.64 11.21 6.07 20.29 5.36 4.29 3.71 16.21

Actual 60 46 52 17 7 0 34 2 4 4 16

0

10

20

30

40

50

60

Estimated vs. Solved in 4.5 hours

Estimated vs. Solved in 4.5 h.

A C B G D K E J I H F

Estimated 58.93 38.64 45.14 20.29 22.64 16.21 11.21 3.71 4.29 5.36 6.07

Actual 60 52 46 34 17 16 7 4 4 2 0

0

10

20

30

40

50

60

problems solved & # teams

#Solved 0 1 2 3 4 5 6 7 8 9 10 11

#Teams 0 6 9 10 17 4 7 3 1 1 2 0

0

2

4

6

8

10

12

14

16

18

A:Digits Are Not
Just Characters

Story
ls command lists file names in lexicographical order
with ASCII codes:

$ ls

file10 file20 file3

But digits are not just characters.

Your task is to compare file names with numbers interpreting digit sequences
as numerical values.

Solution
1. Tokenize given file names into letter items

and number items.

2. Compare sequences of items
lexicographically.

Be aware of the end of file names:

The end of file name comes before both of
letter item and number item.

This problem was solved by all of the teams.

C: Emergency
Evacuation

Problem:
Compute how many steps are required to evacuate
all the passengers from a vehicle.
⚫ The vehicle has an aisle in the center with rows of

seats on its both side.
⚫ The exit is at the rear end of the aisle.
⚫ In one step, passengers on a seat can move

sideways to an adjacent seat or to the aisle if on
the aisle seat.

⚫ Passengers on the aisle can move one row
towards the exit, or get off from the vehicle if
already at the rear end.

A
is

le
 in

 C
en

te
r

R
o

w
s

o
f

Se
a

ts

Passenger Seats on Both Sides

Passengers on aisle seats can move to the aisle

Other passengers can move to the adjacent seat

Passengers already on the aisle

can move toward the exit by one row

The passengers at the rear end of the aisle

can get off the car

Two or more passengers cannot
occupy the same position at a time

Emptied positions become available
in the same step

A Reversed Problem
⚫ Passengers will get on the car, one at a time, and

walk up to their reserved seats

⚫ Their possible moves are the reverses of the
original problem

How many steps are required for all passengers to
reach their reserved seats?

The answer should be the same as the original
problem.

You don’t have to take care of interferences!

Solving the Reversed Problem
⚫ Let 𝒅𝒑 be the distance of the seat from the door for passenger 𝒑

⚫ Let 𝒔𝒑 be the step number in which passenger 𝒑 gets on the car

⚫ The step in which passenger 𝒑 reaches the seat is 𝒅𝒑 + 𝒔𝒑

To minimize the total time 𝐦𝐚𝐱
𝒑

(𝒅𝒑+𝒔𝒑), passengers with

the larger 𝒅𝒑 should be given the smaller 𝒔𝒑

1. Compute 𝒅𝒑: 𝑶 𝒏

2. Sort them to decide desired 𝒔𝒑: 𝑶 𝒏 𝐥𝐨𝐠𝒏 ← dominant

3. Find 𝐦𝐚𝐱
𝒑

(𝒅𝒑+𝒔𝒑): 𝑶 𝒏

Step-wise simulation is not required!

B:Arithmetic
Progressions

Problem Description

Given Set

0
1

3
5

6

9

0, 3, 6, 9

9, 6, 3, 0

1, 5, 9

9, 5, 1

... and trivial ones

Arithmetic Progressions

the longest ones

Find the longest Arithmetic Progressions from given set.

Solution

〇 ● 〇 〇

•Sort the elements in the set

•For each i and j, remember k such that vk = vj+(vj-vi)
•This table can be made in O (n2).

•Start i and k from neighbors of j.

•Check the length of the arithmetic progressions.

i j k

● ● ● ●

Solution

〇●

〇 〇

•Sort the elements in the set

•For each i and j, remember k such that vk = vj+(vj-vi)
•This table can be made in O (n2).

•Start i and k from neighbors of j.

•Check the length of the arithmetic progressions.

i

j k

●

● ● ●〇 ● ●

Solution

〇●

〇 〇

•Sort the elements in the set

•For each i and j, remember k such that vk = vj+(vj-vi)
•This table can be made in O (n2).

•Start i and k from neighbors of j.

•Check the length of the arithmetic progressions.

i

j k

●

● ● ●〇 ● ●

Solution

〇●

〇 〇

•Sort the elements in the set

•For each i and j, remember k such that vk = vj+(vj-vi)
•This table can be made in O (n2).

•Start i and k from neighbors of j.

•Check the length of the arithmetic progressions.

i

j k

●

● ● ●〇 ● ●

Solution

〇●

〇 〇

•Sort the elements in the set

•For each i and j, remember k such that vk = vj+(vj-vi)
•This table can be made in O (n2).

•Start i and k from neighbors of j.

•Check the length of the arithmetic progressions.

j k

●

● ● ●〇 ● ●

i

Solution

〇●

〇 〇

•Sort the elements in the set

•For each i and j, remember k such that vk = vj+(vj-vi)
•This table can be made in O (n2).

•Start i and k from neighbors of j.

•Check the length of the arithmetic progressions.

j

●

● ● ●〇 ● ●

i

k

Solution

〇●

〇 〇

•Sort the elements in the set

•For each i and j, remember k such that vk = vj+(vj-vi)
•This table can be made in O (n2).

•Start i and k from neighbors of j.

•Check the length of the arithmetic progressions.

j k

●

● ● ●〇 ● ●

i

Solution

〇●

〇 〇

•Sort the elements in the set

•For each i and j, remember k such that vk = vj+(vj-vi)
•This table can be made in O (n2).

•Start i and k from neighbors of j.

•Check the length of the arithmetic progressions.

j k

●

● ● ●〇 ● ●

i

vk is
found!

G: What Goes Up
Must Come Down

Problem
•Given an integer sequence
• Swap adjacent elements some times
•Rearrange that first some elements are increasing order,
latter are decreasing order.

1 ≦ 4 ≦ 5 ≧ 3 ≧ 2
• Find minimum number of swaps

Solution
•Binary indexed tree

O(log n) add : data[i] += v
O(log n) sum : data[i..j]

• Initially every index has 1

Solution
• Look at the smallest element
•Move it to leftmost or rightmost side

answer += min(2, 3)
•Deactivate add(index, -1)

Solution
• Look at the second smallest element
•Move it to leftmost or rightmost side

answer += min(3, 1)

Conclusion
•Count left large values and right large values each
indexes
•Add small one to the answer
•Use binary indexed tree (or segment tree)

•※ Be careful to update when the sequence contains
duplicate entries.

D: Shortest
Common Non-
Subsequence

Background:
Longest Common Subsequence

S is a subsequence of P:

P

S

Longest Common Subsequence Problem:

• Input: two sequences A and B

• Output: longest common subsequence

0 1 1 0 1 1 0 1

0 0 0 1

Problem
Shortest Common Non-Subsequence Problem:

• Input: two sequences (consisting of 0 and 1)

• Output: shortest sequence (consisting of 0 and 1)
that is a subsequence of neither of two sequences

0 1 1 0

1 0 0 0
0 0 1

Solution --- Dynamic Programming
Observation

A SNCS of A[i,n] and B[j,m] is obtained by
- adding 0 to a SNCS of A[i0,n] and B[j0,m] or
- adding 1 to a SNCS of A[i1,n] and B[j1,m]
where i0, j0 are the indices of the next appeared 0,
and i1, j1 are the indices of the next appeared 1.

0 1 1 0

1 0 0 0 1 0 0 0

0 1 1 0

0 0 0

100 0 1 001

1 1 0

Solution Recovery
We compute SNCS(i,j) for all i and j by DP

To obtain the lexicographically smallest solution, we
use the following standard technique:

If SNCS(i,j) = SNCS(i0, j0) + 1,
there is a solution that starts from 0

Otherwise, the solution must start from 1

E: Eulerian Flight
Tour

[Problem]
Given an undirected simple graph,

make it Eulerian by adding edges!

Eulerian =
Have a cycle visiting all nodes,
using all edges exactly once each

Eulerian =
Have a cycle visiting all nodes,
using all edges exactly once each

1

2

3

4

5

6

7

8

910

[Famous Fact]

2

4

4 4

4

2

Eulerian ⇔ Connected and
all nodes have even degree

[Solution]

1. Add edges and make
all nodes even-degree

2. Then, add more edges
to make it connected

[Step 1: Even-Degree]

x1
x2

x3

x4

x5

x1 + x2 + x3 ≡ 0

x3 + x4 ≡ 1

Approach 1 : Linear Equations in mod 2
* Edge Candidate = Variable (1: use, 0: not)
* Node = Equation

[Step 1: Even-Degree]

Approach 2 : Graph Theoretic
Think about a spanning forest of the completement graph

Even

Even Even

Odd

Even

Even

Odd Odd

Even

Even

Odd

Even

for v in bottom-up order in the spanning tree:
if “deg(v) in original graph” is odd:

Use the edge (v, parent(v)) and update deg(v)

If the previous step generated…

⚫ 1 connected component➔ Eulerian! Solved!

⚫ 3 or more components ➔ Connect by a cycle

⚫ 2 components, each have 2+ nodes ➔ cycle

⚫ 2 components, …

[Step 2: Connected]

The only one exceptional case:

[Step 2: Connected]

Input was already (Kodd + point)
For all other cases, multiple connected components
can be made into one big one in some way.

K: Sixth Sense

Problem
◆ Play a two-player trick-taking card game
⚫ Each player pulls out a card in every trick
⚫ The player pulling out a card with the

larger number takes the trick
◆ Find the best way to win the game, assuming

that you know the opponent’s actions

4

9

5

7

10

3

4

6

9

2
✅

✅

✅

✅

✅

❌ ❌

❌

❌

❌

Opponent

You

Just to maximize the number
of tricks you take is very easy

Opponent

You

◆ Sort the cards and compare one by one

4

2

4

3

5

6

9

7

10

9

✅ ✅ ✅

It takes 𝑂(𝑛 log 𝑛) time, where 𝑛 is #cards

❌ ❌

To have the lexicographically
largest ordering Is harder
◆ For each trick, choose the best card
⚫ The largest among those with which you

can take the maximum number of tricks

◆ For each candidate card, the best achievable
number is computed in 𝑂(𝑛) time

4

2

5

3

10

6

4

7

9Opponent

You 9
✅

✅✅

To have the lexicographically
largest ordering Is harder
◆ If you can take this trick, you should
⚫ By losing this trick, you cannot increase

the total number of tricks you take
◆ If you cannot, you will lose the trick anyway

3

2

4

3

10

6

4

7

9Opponent

You 9
✅

✅✅

To have the lexicographically
largest ordering Is harder
◆ You can determine whether or not the

candidate number is too large

You

Complexity: With binary search, #candidates is 𝑂(log 𝑛)
𝑂(𝑛) time for each candidate
#tricks is 𝑂 𝑛 and so in total 𝑂(𝑛2 log 𝑛)

< < < < <

Take the trickLose the trick

Lose laterChoose This

J: Colorful Tree

Problem Summary
Given a tree with colored vertices and a sequence of commands
Command:
1. Change the color of a specified vertex
2. Ask the number of edges in the minimum connected subgraph of the tree

containing all vertices of the specified color

2 ≤ 𝑛 ≤ 100000, 1 ≤ 𝑚 ≤ 100000

3

2

Efficiently keep/update subgraphs
It’s difficult to compute the subgraph efficiently in each
query command

An update command just changes the color of one
vertex
→ Remove one vertex from a subgraph and add one

vertex to a subgraph

We can’t keep all subgraphs as they are
(The total number of vertices/edges can be huge)

Which information is needed for each subgraph and how
can we update it?

The change in an update command
Consider as a rooted tree

What happens when adding/removing a vertex?

1. The LCA (lowest common ancestor) of the subgraph changes

The distance from the changed vertex to the original LCA is added (adding)
the new LCA is subtracted (removing)

The change in an update command

2. The LCA of the subgraph doesn’t change

The distance from the changed vertex to a vertex is added/subtracted

Where?
The closest LCA of the changed vertex and some vertex

The change in an update command

Efficiently keep/update subgraphs
What we should keep for each color

1. The current number of edges

2. The set of vertices having the color

3. The LCA of the subgraph

1. Calculate the LCA → 𝑂(log 𝑛) when adding a vertex

𝑶 𝒏 𝐥𝐨𝐠𝒏 when removing a vertex

2. Find the closest LCA of the changed vertex and some vertex → 𝑶(𝒏 𝐥𝐨𝐠𝒏)

The total time complexity is 𝑶((𝒎 + 𝒏)𝒏 𝐥𝐨𝐠𝒏)

Pre-order numbering
Assign a number to each vertex by pre-order (or in/post-order)

Calculate the LCA of the subgraph

→ The LCA of the minimum number vertex and maximum number vertex

134 5 7

3 1196

82

1

1210

Pre-order numbering
Assign a number to each vertex by pre-order (or in/post-order)

Find the closest LCA of the changed vertex and some vertex

→ The LCA of the changed vertex and
the maximum number vertex within smaller number vertices

or the LCA of the changed vertex and
the minimum number vertex within larger number vertices

134 5 7

3 1196

82

1

1210

Summary
What we should keep for each color

1. The current number of edges

2. The set of vertices having the color with pre-order (or in/post-order) numbers

3. The LCA of the subgraph

1. Calculate the LCA → 𝑂(log 𝑛)

2. Find the closest LCA of the changed vertex and some vertex → 𝑂(log 𝑛)

The total time complexity is 𝑶((𝒎 + 𝒏) 𝐥𝐨𝐠𝒏)

I: Ranks

Problem
You’re given an n×m matrix A over F2.
For all indices (i, j), determine if flipping (i, j)
entry of A increases/decreases/keeps the
rank of A.

Constraints: Dimensions n,m <= 1000

Rank of Matrix?
Gaussian elimination (GE) with bit-parallel:
◦ O(n2m / b) (b: bit length)

Naively applying GE n*m times:
◦ O(n3m2 / b) : obviously TLE

Some efficient algorithm is required here.

For Last Column (1/3)
Consider from simple case: j=m.
◦ Assume that we computed r (the rank of A).

◦ We can compute ri,m by GE for A+Ei,m, where
Ei,j is matrix with (i,j) entry 1 and other ones 0.
◦ O(n3m / b) 

◦ But we can speed up this computation.

A

For Last Column (2/3)
◦ Let Am be the m-th column vector.

◦ Let δi be a vector with only the i-th element 1.

Now, let X:=[(Am+δ1) … (Am+δn)]. To compute ri,m for all i,

◦ Suppose now we have [A | X] (concatenated matrix).

◦ Perform GE from first to the (m-1)-th column.

◦ Then, for each i, check if the additional GE to (m+i)-th
column increases the rank. → This works in O(n2m / b). ☺

A X

For Last Column (3/3)
Instead of [A | X], we may do the same thing for [A | I].

◦ Any row operations can be expressed as an n×n matrix S.

◦ Applying S to some matrix B changes it to S･B.

◦ For any S, ((m+i)-th column of S･[A | X]) = S･(Am + δi)
= (m-th + (m+i)-th column) of S･[A | I]).

So, perform GE by the end of m-th column, then check
(m+i)-th column.

A I

General Case (1/3)
Now we want to compute ri,j for any (i, j).

We consider GE for [A | I]. Now let us assume that
◦ We perform GE by the end of m-th column.

◦ We also perform back substitution: We deleted as many
1’s in A as possible.

Now the A’s part will look like this (echelon form).

01010001000

00111010000

00000100110

00000011111

00000000000

00000000000

General Case (2/3)
When two or more 1’s are lined up in the j-th column in
echelon form:
◦ Suppose that we move the j-th column to the end of columns.

◦ The matrix is still echelon form.

◦ So, it suffices to look the I’s part to compute ri,j.

01010001000

00111010000

00000100110

00000011111

00000000000

00000000000

j

01000010001

00110100001

00001001100

00000111110

00000000000

00000000000

m

General Case (3/3)
When only one 1 is lined up in the j-th column:
◦ Again, suppose we move the j-th to the end.

◦ Now the matrix is not echelon form.

◦ Suppose that we swap rows and then move columns.

◦ This results in echelon form, since we performed back substitution.

◦ Again, it suffices to look the I’s part to compute ri,j.

01010001000

00111010000

00000100110

00000011111

00000000000

00000000000

00100010001

01110100000

00001001100

00000111110

00000000000

00000000000

01110100000

00001001100

00000111110

00100010001

00000000000

00000000000

01101000100

00010110000

00001111010

00000000111

00000000000

00000000000

Conclusion
Time complexity: O(n2(n+m) / b)

There’re other solutions.
◦ Do similar thing through LR decomposition

◦ O(n3 log n / b) solution (simpler?)

H: Four-Coloring

Find a 4-coloring of a planar graph.

Special Constraints

• Edge ⇒ Straight line segment
• Inclinations are multiples of 45°

Key Observation

Bottom right vertex 𝑠 has degree ≤ 4

𝑠

Algorithm

Lexicographically sort the vertices

5

1

6

3

2

4

5

1

6

3

2

4

Algorithm

Extend the 4-coloring of 𝐺[1,… , 𝑖] to a
4-coloring of 𝐺[{1,… , 𝑖 + 1}].

Case 1

𝑁(𝑠) uses at most 3 colors
⇒ use the remaining color

𝑠

𝑁(𝑠) uses 4 colors
⇒ try to change green to blue

𝑠

Case 2

No green-blue alternating paths
⇒ swap green and blue

𝑠

Case 2a

A green-blue alternating path exists
⇒ no red-orange alternating paths

𝑠

Case 2b

Problem F:
Fair Chocolate-
Cutting

Problem Summary
Given a convex polygon,
compute the minimum and maximum lengths of line
segments that divide the polygon into two equal areas.

minimum
length

maximum
length

minimum
length

maximum
length

Observation to Solution (1)
The length of line segment gets (local) maximum when
either (or both) of end points is on a vertex.

Observation to Solution (2)
The length of line segment gets (local) minimum when
(a) either (or both) of end points is on a vertex, or
(b) the line segment is perpendicular

to the angle bisector line*.

* Proof sketch: consider when the differential of length is equal to 0.

Solution: O(n) (O(n2) may do)

1. (Initialization) Choose a vertex P and find a vertex Q.
✓area(P…Q) <= total-area/2 && area(P…next(Q)) > total-area/2

2. Repeat following procedure until P moves around

2a. (segment 1) find a point R on edge Q--next(Q)

✓ area(P…R) = total-area/2 ➔ Update max and min

P

Q next(Q)

P

Q next(Q)R

1. 2a.

Solution: O(n)
2b. (segment 2) find point S on edge P--next(P) and point T
on edge Q--next(Q)
✓area(S…T) = total-area/2

✓S--T is perpendicular to bisector(P--next(P), next(Q)--Q)

◦ Solve an equation or use bisection method ➔ update min

P

Q next(Q)R

next(P)

S

T

Judge’s Testcase Gallery

n = 2171
Min = 15277.342
Max = 76840.956

n = 4260
Min = 40456.550
Max = 122057.944

n = 1360
Min = 15205.205
Max = 15252.000

n = 3
Min = 0.000500
Max = 74999.538

What happened in
the last 30 minutes?

That is the question.

