Commentaries on Problems

JUDGE TEAM
ICPC 2021 ASIA YOKOHAMA REGIONAL

Problem vs. \#Teams @ Freeze

Problem vs. \#Teams @Freeze Last Year

Problem vs. \#Teams @Freeze

This Year

\#Solved vs \#Teams

\#Solved vs \#Teams @Freeze

previous years

Problem vs. \#Teams @Freeze
 estimated difficulty order

A: Loop of Chocolate

Story

Let's make sweets of a fancy shape that is a loop of chocolate.

Design

The shape of a loop is formed by a union of a number of spheres.

Input and Output

1. Input: Given the radius and positions of spheres.
2. Output: The total volume of the union of the spheres, i.e., the amount of chocolate for filling the loop.

This problem was solved by all of the teams.

Solution

There are n spheres.
$S_{k} \equiv k$ th Sphere with the center $\left(x_{k}, y_{k}, z_{k}\right)$

$$
\left(S_{n+1} \equiv S_{1}\right)
$$

Volume of the Union $=$

$$
\begin{array}{r}
n \cdot \sum_{k=1}^{n} V\left(S_{k}\right)-\sum_{k=1}^{n} V\left(S_{k} \cap S_{k+1}\right), \\
V\left(S_{k}\right) \equiv \frac{4}{3} \pi r^{3} \quad \begin{array}{r}
V\left(S_{k} \cap S_{k+1}\right) \equiv \frac{2}{3} \pi\left(r-\frac{d_{k, k+1}}{2}\right)^{2}\left(2 r+\frac{d_{k, k+1}}{2}\right) \\
d_{k, k+1}=\operatorname{distance}\left(\left(x_{k}, y_{k}, z_{k}\right),\left(x_{k+1}, y_{k+1}, z_{k+1}\right)\right)
\end{array}
\end{array}
$$

Spherical cap

$$
\int_{0}^{h} \pi\left(r^{2}-(r-x)^{2}\right) d x=\pi h^{2}\left(r-\frac{h}{3}\right)
$$

Volume of the spherical cap

Half of the volume of the intersection of two spheres with radius r

Intersection of two spheres

B:Lottery Fun
Time

Problem

Calculate the maximum possible amount you may win by your tickets with different 6-digit numbers.

Winning matches and prizes are:
All 6 digits: 300,000 yen,
Lowest 4 digits: 4,000 yen, and
Lowest 2 digits: 500 yen.

- Three winning numbers for the 3rd prizes.
- Winning numbers differ with the lowest 2 digits.

Exhaustive Search!

1 Find frequencies of last two digits and last four digits among the tickets at hand: $O(n)$

2 Find top 5 frequencies of last two-digits
3 Choose up to 3 out of the top 5 two-digits for the third prize.

4 Choose the most frequent four digit number with last two digits different from them, if any, for the second prize.

5 Any cards remain with last two digits unused, make one of them win the first prize.

Pitfalls

All teams solved this problem but after many failures.

- Top 5 rather than top 3 for candidates of third prizes. Two of them might better be used for the first and the second prizes.
- The variety of the last two digits in the tickets at hand can be quite poor.
- The tickets may have only few kinds of last two digits.
- Choosing less than 3 third prize numbers may be better, to allow winning the first and/or the second prizes.
- Choosing one from the first and the second priezes may be required.

C:
Reversible Compression

Story: Data Compression

You are given the decoder of the data compression.
The set of code words is $\{00,01, \ldots, 99\}$
OX -> output X
XO -> no output
AL -> do "output the A-th last one" for L times
Example: (Compression ratio $=8 / 15$)
Code string: $\begin{array}{lllll}00 & 01 & 25 & 48\end{array}$
Decoded string: $0 \quad 1 \quad 0101010101010$

Story: Data Compression

Some code strings decoded into the same string.
E.g., these are all decoded into 010101010101010 :

00012548, 00012228821000, 00012882221000
Reversible: it and its reverse are both decoded into the same string.

Your task is to find the lexicographically earliest shortest reversible code string decoded into the given string.

Solution

Shortest path search in a DAG of $(\mathrm{n}+1)^{2}$ vertices :
Vertex: a pair (i, j) meaning that the first i digits has been output and the last j digits are to be output
Edge: a code word

You can use BFS, Dijkstra search, or a simple DP filling up the table of size $(\mathrm{n}+1)^{2}$ to solve this problem in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ or $\mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)$

D:Wireless
 Communication Network

Problem

We are building a tree by the following procedure

1. Start from n trees of singletons
2. Select two adjacent trees and join their highest-numbered nodes

Compute the largest diameter among the possible trees

Solution: DP

Let
$\operatorname{diam}(I, r)=$ the largest diameter for the interval $\{n[/], \ldots, n[r-1]\}$, height $(1, r)=$ the height of such tree.

Then, we have
$\operatorname{diam}(I, r)=\max \{\operatorname{diam}(I, m), \operatorname{diam}(m+1, r)$, height $(I, m)+$ height $(m+1, r)+1\}+1$ where m is the index of the node with the highest value.

Because:

- the diameter is spanned by a path not passing m or passing m, and
- not passing $\mathrm{m} \Leftrightarrow$ the path is contained in [I..m) or [m+1..r) because of the construction of the tree.

E:Planning Railroad Discontinuation

Problem Description

Compute the cost of a minimum spanning tree (MST) of a given graph.

The given graph has a huge number of vertices, but has good symmetry.

Graph

$G=(V, E):$ an (undirected weighted) graph (subway network in a city)
$S=\left\{s_{0}, s_{1}, \ldots, s_{r-1}\right\} \subset V$: subset of V (bullet train stations)
$G_{0}, G_{1}, \ldots, G_{l-1}: l$ copies of G

- $\in($ copy of $) S$

Cost

Solution

Kruskal's algorithm

- $G^{\text {all }}=\left(V^{\text {all }}, E^{\text {all }}\right):$ whole graph $\supset G_{0}, G_{1}, \ldots$
- Sort edges by their cost.
- $T=\left(V^{\text {all }}, \varnothing\right)$: forest in $G^{\text {all }}$ with no edges
-For each edge, determine whether the edge can be added to the forest T using the union-find data structure.

Edges in G_{i}

connected components in $G_{i} \cap T$
(1)

- \in (copy of) S
(2)

(3)

In the cases (1) and (2), whether the red edge can be added to T is determined only in G_{i}.
This is the same for all subgraph G_{i}.

Preparation

(3)

-Apply Kruskal's algorithm to G and make a table
conn[c] := \#(connected components of $G(c)$ containing some $v \in S$) $\operatorname{cost}[\mathrm{c}]:=\sum \operatorname{cost}$ of edges of type (3) with cost $\leq c$
$G(c):$ subgraph with edges whose costs $\leq c$

Edges between G_{i} and G_{i+1}

if $b_{i}>b_{i+1}$

\#(edges with cost a_{i} in an MST) $=$ \#(connected components of $\left.G_{i} \cap T\right)$
$=\operatorname{conn}\left[a_{i}-b_{i}-1\right]$
if $b_{i}>b_{i+1}$

Edges between G_{i} and G_{i+1}

if $b_{i}>b_{i+1}$

If the edges with costs a_{i-1}, a_{i}, a_{i+1} are contracted, ...

$$
\begin{aligned}
& \text { F:It's Surely } \\
& \text { Complex }
\end{aligned}
$$

Problem Description

Given a prime number p and a positive integer n, compute the product of all the complex numbers $a+b i$ such that

- a and b are integers between 0 and n, inclusive, and
- a and/or b is not a multiple of p.

The number of the complex numbers can be up to almost 10^{36}, and the output should be in modulo p.

In the following, "mod p " may be omitted.

Problem Description

More visually, compute the product of all the numbers represented as black dots on the complex plane in the figure below.

Solution

Since $(1+i) \cdots(k+k i)=k!(1+i)^{k}$, the product of the numbers on the diagonal is

$$
(p-1)!!^{\left[\frac{n}{p}\right]}(n \% p)!(1+i)^{(p-1)\left[\frac{n}{p}\right]+(n \% p)}
$$

$(n \% p)!(1+i)^{n \% p}$ in the sense of $\bmod p$
The complexity is $O(p)$

$$
(p-1)!(1+i)^{p-1}
$$

Solution

Because $(a+b i) \times(b+a i)=\left(a^{2}+b^{2}\right) i$, the product in the triangle areas is $\left(\prod_{j=1}^{p-1} j^{c_{j}}\right) i^{{ }^{c} c_{j}}$ where c_{j} is half the number of $\langle a, b\rangle$ s.t. $a^{2}+b^{2}=j$.

The complexity is
 $O(p \log n)$ if $c_{j} \mathrm{~s}$ are available

Solution

The complexity is $O(p \log p)$ with Fast Fourier Transform (FFT)

The number of $\langle a, b\rangle$ s.t. $a^{2}+b^{2}=j(0 \leq a, b, j<p)$ is calculated by performing self-convolution of $\left(d_{0}, \ldots, d_{p-1}, 0, \ldots, 0\right)$ where d_{k} is the number of a s.t. $a^{2}=k(0 \leq j<p)$.

$$
\left(d_{0}, \ldots, d_{p-1}, 0, \ldots, 0\right)
$$

This element is not used

Self-convolution

$$
\left(d_{0} d_{0}, \ldots, \sum_{k_{1}+k_{2}=k} d_{k_{1}} d_{k_{2}}, \ldots, d_{p-1} d_{p-1}\right)
$$

These numbers include the cases where $a=b$, and so need some adjustments

Solution

FFT Convolution is efficient, but FFT over the complex field with double precision FP numbers doesn't have enough precision.

The precision problem is solved by dividing the area like the following.

The product of a square area is computed as described so far.

The product of a pair of vertical and horizontal areas is computed similarly.

Solution

Although the number of square and rectangle areas can be very large, at most four of them are unique and the others are replicas in the sense of mod p.

This is unique

These are the same in the sense of $\bmod p$

The Last Comment

A straightforward FFT program in Java/Kotlin may create and destroy many objects, and so it can be rather slow. To make matters worse, the Java execution environment of today's contest uses Serial GC.

G:Genealogy of Puppets

Problem Description

Generate a binary tree under the following constraints:

- The tree consists of $n(\leq 300)$ vertices.
- Vertices are numbered from 1 to n.
- Vertex i has at least x_{i} and at most y_{i} children.
- If vertex i has any child, there must be a child whose index is larger than i.

How many trees (modulo $10^{9}+7$) can be generated?

Examples

Sample Input 1

$$
\begin{aligned}
& n=3 \\
& \left(x_{1}, y_{1}\right)=(0,1) \\
& \left(x_{2}, y_{2}\right)=(1,2) \\
& \left(x_{3}, y_{3}\right)=(0,2)
\end{aligned}
$$

Solution

Basic strategy: Build subtrees by adding vertices from vertex n to vertex 1 .

Dynamic Programming memorizing

- the number of roots, and
- the number of unassigned edges
(connected to smaller-index vertices).

How to add a new vertex?

To add a new vertex i, you need to consider the indices of the parent p_{i} and the children $c_{i, l e f t}, c_{i, r i g h t}$.

$p_{i}>i$

$$
p_{i}<i
$$

(decide p_{i} later)

Left child edge*

(decide $c_{i, l e f t}$ later)
*) $c_{i, r i g h t}$ can be determined in the similar way.

How to add a new vertex?

How to deal with the loop case?

No tree can be used as both parent and child at the same time.

Key insight: whatever the parent is, there is exactly one root node cannot be used as the child.
\rightarrow \#(child tree candidates) is always \#(all trees) -1 .
The overall time complexity is $\mathrm{O}\left(n^{3}\right)$.

H: Cancer DNA

Problem Description

You are given m DNA patterns P_{1}, \ldots, P_{m} of length n.
The task is to approximate

$$
\operatorname{Pr}_{S \sim\{A, G, C, T\}^{n}}\left[S \text { matches } P_{i}(\exists i)\right]
$$

up to a 5% multiplicative error.

Example: $P_{1}=$ "AC?" , $P_{2}=$ "A?T"
ACA, ACG, ACC, ACT, AAT, AGT, ATT matches P_{1} or P_{2}.

$$
\operatorname{Pr}_{S}\left[S \text { matches } P_{1} \text { or } P_{2}\right]=\frac{7}{4^{3}}=0.109375
$$

A First Attempt

- Random sampling

Randomly choose k samples $S_{1}, \ldots, S_{k} \sim\{A, G, C, T\}^{n}$, and approximate the probability by

$$
\frac{\#\left\{S_{j} \mid S_{j} \text { matches } P_{1}, \ldots, P_{m}\right\}}{k} .
$$

- Issue

However, if $\operatorname{Pr}_{S}\left[S\right.$ matches $\left.P_{1}, \ldots, P_{m}\right] \approx 0$, the
numerator is 0 with high probability, in which case the output is not a good approximation in terms of multiplicative error.
(This is good approximation in terms of an additive error, though.)

Solution

- Idea: Random sampling from a smaller space!
- Let $U:=\left\{(i, S) \mid S\right.$ matches $\left.P_{i}\right\}$. (i.e., the disjoint union of DNA sequences that match P_{i})
- Let $G:=\left\{(i, S) \in U \mid i=\min \left\{j \mid S\right.\right.$ matches $\left.\left.P_{j}\right\}\right\}$.

$$
\text { (If } S \text { matches } P_{i} \text { but not } P_{1}, \ldots, P_{i-1} \text {, then }(i, S) \in G \text {.) }
$$

- Our goal is to compute $4^{-n} \cdot|G|=4^{-n} \cdot|U| \cdot \frac{|G|}{|U|}$.
- $|U|$ can be easily computed by counting the number of ?'s.
- $|G| /|U|$ can be approximated by random sampling.

Uniformly sample (i,S) $\sim U$ and check if $(i, S) \in G$. (in time $O(n m)$)
Since $\frac{|G|}{|U|} \geq \frac{1}{m}$, the random sampling can estimate $\frac{|G|}{|U|}$ up to a $1 \pm \epsilon$ error in time $O\left(\frac{m}{\epsilon^{2}}\right)$.

- Overall, the probability can be ($1 \pm \epsilon$)-approximated in time $O\left(n m \cdot m / \epsilon^{2}\right)$ with high probability.

Background

- A randomized algorithm that computes a $(1 \pm \epsilon)$ multiplicative approximation of a solution in time poly $\left(n, \frac{1}{\epsilon}\right)$ is called FPRAS (fully polynomial-time randomized approximation scheme).
- The algorithm is a special case of FPRAS for DNF counting.
I: "Even" Division

Problem Description

Divide a graph into connected subgraphs with even number of nodes (\#node, \#edge $\leqq 100,000$)

Any such division is accepted, as long as it does not allow further division.

Approach

1. Divide into two connected even-nodes subgraphs
2. Repeat it until no further division is possible

Divide to two: Trees

[Key insight]
Dividing to two parts is easy for trees.
Let's think about the case of trees first.

Divide to two: Trees

A node with even degree \rightarrow
At least one subtree has even nodes
(if not, 1 + odd*even = odd)
All nodes have odd degrees
\rightarrow
no division is possible (proof by induction)

Divide to two: General case

Take a spanning tree.

- Even degree node \rightarrow Divide at the node
- All degrees odd \rightarrow Replacing an edge with a nontree edge gives us two even-degree nodes

Repeat

- Naively repeating the process takes Ω (NM) time, but
- You don't need to recompute the spanning tree every time.
- Take a spanning tree (DFS tree has a good structure) of the whole graph only once
- Run a one-pass bottom-up traversal to find even-degree nodes and non-tree edges

Background

- The division is a kind of generalization of the perfect matching (= all subgraphs have 2 nodes, instead of even nodes)
- A. D. Scott. On induced subgraphs with all degrees odd. Graphs and Combinatorics, 17(3):539-553, 2001.

$$
\begin{aligned}
& \text { J:The Cross } \\
& \text { Covers Everything }
\end{aligned}
$$

Problem

1. Given n points
2. Select a pair of them
3. Create a cross shaped area
4. Count how many pairs that covers all given points

Amendment

The problem text is missing the condition

$$
\text { A pair }<p, q>\text { must satisfy } x_{p} \leq x_{q} \text { and } y_{p} \leq y_{q}
$$

In this slide we consider the problem J with the condition

Solution

1. The upper-right candidates A: no more points in upper right area
2. The lower-left candidates B: no more points in lower left area

Solution

1. Select an upper-right point ($a x, a y$) from A
2. x-limit $=\min \{x \mid(x, y)$ in the given set, $a y \leq y\}$

Solution

1. Select an upper-right point (ax, ay) from A
2. x-limit $=\min \{x \mid(x, y)$ in the given set, $a y \leq y\}$
3. y-limit $=\min \{y \mid(x, y)$ in the given set, $a x \leq x\}$

Solution

1. The valid lower-left points (bx, by) must satisfy bx $\leq x$-limit and by $\leq y$-limit
2. If B is ordered by x-increasing and y-decreasing, valid lower-left points are consecutive in B
3. Count the valid points in B with binary search algorithm

*

> K: Distributing the Treasure

Problem Setting

Value Estimation

A	B	C		1	2	3	4
杂	余	余	A	10	9	9	5
			B	4	4	4	4
			C	100	2	1	1

Distribute Items to Members without Making Anyone Angry

Problem Setting

> Value Estimation

	1	2	3	4
A	10	9	9	5
B	4	4	4	4
C	100	2	1	1

Distribute Items to Members without Making Anyone Angry

Problem Setting

Problem Setting

Value Estimation

A	B	C		1	2	3	4
年	年	年		10	9	9	5
		B	4	4	4	4	
			100	2	1	1	

Distribute Items to Members without Making Anyone Angry （Envy－Free up to any item；EFX）
n ：\＃of Members
m ：\＃of Items
$v_{i, j}$ ：Value of Item j for Member i

$$
n m \leq 2 \times 10^{5}
$$

$$
1 \leq v_{i, j} \leq 2 \times 10^{5}
$$

Solution

```
n:# of Members
m: # of Items
vi,j}:\mathrm{ Value of Item j for Member i
nm}\leq2\times1\mp@subsup{0}{}{5
1\leq vi,j}\leq2\times1\mp@subsup{0}{}{5
```

If $n \geq m$, then you can distribute the items arbitrarily as long as every member receives at most one item.
\rightarrow Assume $n<m$, and then $n \leq 447$ as $n^{2}<n m \leq 2 \times 10^{5}$

Solution

```
n: # of Members
m: # of Items
vi,j}:\mathrm{ Value of Item j for Member }
nm}\leq2\times1\mp@subsup{0}{}{5},n\leq44
1\leq vi,j}\leq2\times1\mp@subsup{0}{}{5
```

If $n \geq m$, then you can distribute the items arbitrarily as long as every member receives at most one item.
\rightarrow Assume $n<m$, and then $n \leq 447$ as $n^{2}<n m \leq 2 \times 10^{5}$

You can always find a good distribution in $0\left(\underline{n^{2}(m-n)}\right)$ time!
[Idea]

$$
\leq 4 \times 10^{7}
$$

Distribute the items in descending order of values appropriately, where sometimes exchange the sets of received items.

Solution

```
n:# of Members
m: # of Items
vi,j}:\mathrm{ Value of Item j for Member i
nm}\leq2\times1\mp@subsup{0}{}{5},n\leq44
1\leq vi,j}\leq2\times1\mp@subsup{0}{}{5
```

[Idea]
Distribute the items in descending order of values appropriately, where sometimes exchange the sets of received items.

	1	2	3	4
A	10	9	9	5
B	100	2	1	1

Solution

$$
\begin{aligned}
& n: \# \text { of Members } \\
& m: \# \text { of Items } \\
& v_{i, j}: \text { Value of Item } j \text { for Member } i \\
& n m \leq 2 \times 10^{5}, n \leq 447 \\
& 1 \leq v_{i, j} \leq 2 \times 10^{5}
\end{aligned}
$$

[Idea]

Distribute the items in descending order of values appropriately, where sometimes exchange the sets of received items.

	1	2	3	4
A	10	9	9	5
B	100	2	1	1

Solution

$$
\begin{aligned}
& n: \# \text { of Members } \\
& m: \# \text { of Items } \\
& v_{i, j}: \text { Value of Item } j \text { for Member } i \\
& n m \leq 2 \times 10^{5}, n \leq 447 \\
& 1 \leq v_{i, j} \leq 2 \times 10^{5}
\end{aligned}
$$

[Idea]

Distribute the items in descending order of values appropriately, where sometimes exchange the sets of received items.

	1	2	3	4
A	10	9	9	5
B	100	2	1	1

Solution

$$
\begin{aligned}
& n: \# \text { of Members } \\
& m: \# \text { of Items } \\
& v_{i, j}: \text { Value of Item } j \text { for Member } i \\
& n m \leq 2 \times 10^{5}, n \leq 447 \\
& 1 \leq v_{i, j} \leq 2 \times 10^{5}
\end{aligned}
$$

[Idea]

Distribute the items in descending order of values appropriately, where sometimes exchange the sets of received items.

	1	2	3	4
A	10	9	9	5
B	100	2	1	1

Solution

$$
\begin{aligned}
& n: \# \text { of Members } \\
& m: \# \text { of Items } \\
& v_{i, j}: \text { Value of Item } j \text { for Member } i \\
& n m \leq 2 \times 10^{5}, n \leq 447 \\
& 1 \leq v_{i, j} \leq 2 \times 10^{5}
\end{aligned}
$$

[Idea]

Distribute the items in descending order of values appropriately, where sometimes exchange the sets of received items.

	1	2	3	4
A	10	9	9	5
Angry B	100	2	1	1

	1	2	3	4
Angry A	10	9	9	5
B	100	2	1	1

Solution

$$
\begin{aligned}
& n: \# \text { of Members } \\
& m: \# \text { of Items } \\
& v_{i, j}: \text { Value of Item } j \text { for Member } i \\
& n m \leq 2 \times 10^{5}, n \leq 447 \\
& 1 \leq v_{i, j} \leq 2 \times 10^{5}
\end{aligned}
$$

[Idea]

Distribute the items in descending order of values appropriately, where sometimes exchange the sets of received items.

		1	2	3	4
Exchange	A	10	9	9	5
	B	100	2	1	1
\downarrow Both are fine!		1	2	3	4
Both are fine!	A	10	9	9	5
	B	100	2	1	1

Solution

```
n: # of Members
m: # of Items
vi,j}\mathrm{ :Value of Item j for Member }
nm}\leq2\times1\mp@subsup{0}{}{5},n\leq44
1\leq v
```


[Idea]

Distribute the items in descending order of values appropriately, where sometimes exchange the sets of received items.

Members

Item Sets

\longrightarrow Assign
----> Envy (NOT Angry)

Solution

```
n: # of Members
m: # of Items
vi,j}\mathrm{ : Value of Item j for Member }
nm}\leq2\times1\mp@subsup{0}{}{5},n\leq44
1\leq v
```


[Idea]

Distribute the items in descending order of values appropriately, where sometimes exchange the sets of received items.

Members

Item Sets

\longrightarrow Assign
----> Envy (NOT Angry)

NOT envied from anyone
\rightarrow You can add the next item here

Solution

```
n: # of Members
m: # of Items
vi,j}\mathrm{ : Value of Item j for Member }
nm}\leq2\times1\mp@subsup{0}{}{5},n\leq44
1\leq v
```


[Idea]

Distribute the items in descending order of values appropriately, where sometimes exchange the sets of received items.

Members

Item Sets

\longrightarrow Assign
----> Envy (NOT Angry)

NO such non-envied set
\rightarrow A cycle exists

Solution

```
n: # of Members
m: # of Items
vi,j}\mathrm{ : Value of Item j for Member }
nm}\leq2\times1\mp@subsup{0}{}{5},n\leq44
1\leq v
```


[Idea]

Distribute the items in descending order of values appropriately, where sometimes exchange the sets of received items.

Members

Item Sets

\longrightarrow Assign
----> Envy (NOT Angry)

NO such non-envied set
\rightarrow A cycle exists
\rightarrow Exchange along it

Solution

```
n: # of Members
m: # of Items
vi,j}\mathrm{ : Value of Item j for Member }
nm}\leq2\times1\mp@subsup{0}{}{5},n\leq44
1\leq v
```


[Idea]

Distribute the items in descending order of values appropriately, where sometimes exchange the sets of received items.

Members

Item Sets

\longrightarrow Assign
----> Envy (NOT Angry)

After exchange, for everyone, the estimated values increase
\rightarrow Max-weight matching is enough!

Solution

```
n:# of Members
m: # of Items
vi,j}:\mathrm{ Value of Item j for Member i
nm}\leq2\times1\mp@subsup{0}{}{5},n\leq44
1\leq vi,j}\leq2\times1\mp@subsup{0}{}{5
```

[Procedure]

1. While $j=1,2, \ldots, m$
2. If no non-envied item set exists
3. Find a max-weight matching
in the assign-envy graph and exchange
4. Add item j to some non-envied item set X_{i} (Nobody gets angry by this addition)

Solution

```
n:# of Members
m: # of Items
vi,j}:\mathrm{ Value of Item j for Member i
nm \leq 2 < 105, n s 447
1\leq vi,j}\leq2\times1\mp@subsup{0}{}{5
```

[Procedure]

1. While $j=1,2, \ldots, m$
2. If no non-envied item set exists
3. Find a max-weight matching
in the assign-envy graph and exchange
4. Add item j to some non-envied item set X_{i} (Nobody gets angry by this addition)
$\mathrm{O}\left(n^{3}\right)$ time by Hungarian method?
\rightarrow We can update the current assignment in $\mathrm{O}\left(n^{2}\right)$ time

Solution

```
n: # of Members
m: # of Items
vi,j}\mathrm{ : Value of Item j for Member i
nm}\leq2\times1\mp@subsup{0}{}{5},n\leq44
1\leq v
```

$\mathrm{O}\left(n^{3}\right)$ time by Hungarian method?
\rightarrow We can update the current assignment in $O\left(n^{2}\right)$ time
Why?
Because no improving cycle exists for the assignment just before adding item $j-1$, all the new cycles must intersect the item set containing $j-1$.

Solution

```
n: # of Members
m: # of Items
vi,j}:\mathrm{ Value of Item j for Member i
nm}\leq2\times1\mp@subsup{0}{}{5},n\leq44
1\leq vi,j}\leq2\times1\mp@subsup{0}{}{5
```

$O\left(n^{3}\right)$ time by Hungarian method?
\rightarrow We can update the current assignment in $\mathrm{O}\left(n^{2}\right)$ time
Why?
Because no improving cycle exists for the assignment just before adding item $j-1$, all the new cycles must intersect the item set containing $j-1$.
\rightarrow It suffices to find a shortest cycle intersecting a vertex, which has exactly one leaving edge (the assign edge)
\rightarrow Just find a shortest path in DAG (by removing that edge)!

Solution

```
n: # of Members
m: # of Items
vi,j}:\mathrm{ Value of Item j for Member }
nm}\leq2\times1\mp@subsup{0}{}{5},n\leq44
1\leq vi,j}\leq2\times1\mp@subsup{0}{}{5
```

$O\left(n^{3}\right)$ time by Hungarian method?
\rightarrow We can update the current assignment in $\mathrm{O}\left(n^{2}\right)$ time
This is required only after every item set has at least one item
$\rightarrow \mathrm{O}\left(n^{2}(m-n)\right)$ time in total $\left(n^{2}(m-n) \leq 4 \times 10^{7}\right)$

Other solutions

- Using primal-dual update of weighted matching problem
- Just resolve a cycle in the assign-envy graph greedily (very fast but no better bound is known than $\mathrm{O}\left(n^{3} m\right)$ time)

