
Commentaries on
Problems
JUDGE TEAM
ICPC 2021 ASIA YOKOHAMA REGIONAL

Problem vs. #Teams @Freeze

0

20

40

60

80

100

120

A B C D E F G H I J K

Attempted Accepted

Problem vs. #Teams @Freeze
Last Year

Problem vs. #Teams @Freeze

0

20

40

60

80

100

120

A B C D E F G H I J K

Attempted Accepted

lots of incorrect submits

This Year

#Solved vs #Teams

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10

#Solved

#T
ea

m
s

#Solved vs #Teams @Freeze

2020 2019

previous years

Problem vs. #Teams @Freeze

0

20

40

60

80

100

120

A B J C D F I G H K E

Attempted Accepted

estimated difficulty order

A: Loop of Chocolate

Story
Let’s make sweets of a fancy shape
that is a loop of chocolate.

Design
The shape of a loop is formed by a
union of a number of spheres.

Input and Output
1. Input: Given the radius and positions of spheres.

2. Output: The total volume of the union of the
spheres, i.e., the amount of chocolate for filling
the loop.

This problem was solved by all of the teams.

Solution
There	are	n	 spheres.
𝑆! ≡ 𝑘 th Sphere with the center (𝑥! ,	𝑦! ,	𝑧!)

(𝑆"#$ ≡ 𝑆$)
Volume	of	the	Union	=

𝑛 B C
!%$

"

𝑉 𝑆! − C
!%$

"

𝑉 𝑆! ∩ 𝑆!#$,

𝑉(𝑆!) ≡
4
3
𝜋𝑟" 𝑉(𝑆! ∩ 𝑆!#$) ≡

2
3
𝜋 𝑟 −

𝑑!,!#$
2

&

2𝑟 +
𝑑!,!#$
2

𝑑!,!#$ = distance((𝑥! ,𝑦! , 𝑧!), (𝑥!#$, 𝑦!#$, 𝑧!#$))

Spherical cap
h

r

!
<

=
𝜋 𝑟> − 𝑟 − 𝑥 > 𝑑𝑥 = 𝜋ℎ> 𝑟 −

ℎ
3

Volume of the spherical cap

Half of the volume of the intersection of two spheres with radius r

Intersection of two spheres

ℎ = 𝑟 −
𝑑
2

2𝜋ℎ! 𝑟 −
ℎ
3

=
2
3
𝜋 𝑟 −

𝑑
2

!

2𝑟 +
𝑑
2

Doubled

d

r

h

r

B:Lottery Fun
Time

Problem
Calculate the maximum possible amount you may win by your
tickets with different 6-digit numbers.

Winning matches and prizes are:

All 6 digits: 300,000 yen,

Lowest 4 digits: 4,000 yen, and

Lowest 2 digits: 500 yen.

l Three winning numbers for the 3rd prizes.

l Winning numbers differ with the lowest 2 digits.

Exhaustive Search!
1 Find frequencies of last two digits and last four digits

among the tickets at hand: O(n)

2 Find top 5 frequencies of last two-digits

3 Choose up to 3 out of the top 5 two-digits for the third
prize.

4 Choose the most frequent four digit number with last
two digits different from them, if any, for the second
prize.

5 Any cards remain with last two digits unused, make one
of them win the first prize.

Pitfalls
All teams solved this problem but after many failures.

l Top 5 rather than top 3 for candidates of third prizes. Two of
them might better be used for the first and the second
prizes.

l The variety of the last two digits in the tickets at hand can be
quite poor.

l The tickets may have only few kinds of last two digits.

l Choosing less than 3 third prize numbers may be better, to
allow winning the first and/or the second prizes.

lChoosing one from the first and the second priezes may be
required.

C:
Reversible
Compression

Story: Data Compression
You are given the decoder of the data compression.

The set of code words is {00, 01, …, 99}
0X -> output X
X0 -> no output
AL -> do “output the A-th last one” for L times

Example: (Compression ratio = 8/15)
Code string: 00 01 25 48
Decoded string: 0 1 01010 10101010

2nd last

Story: Data Compression
Some code strings decoded into the same string.
E.g., these are all decoded into 010101010101010:

00012548, 00012228821000, 00012882221000

Your task is to find the lexicographically earliest shortest
reversible code string decoded into the given string.

Reversible: it and its reverse are
both decoded into the same string.

Solution
Shortest path search in a DAG of (n+1)2 vertices :
Vertex: a pair (i, j) meaning that the first i digits has been output

and the last j digits are to be output
Edge: a code word

You can use BFS, Dijkstra search, or a simple DP filling up the table of
size (n+1)2 to solve this problem in O(n2) or O(n2 log n)

010101010101010
010101010101010

0,0
010101010101010
010101010101010

15,15

010101010101010
010101010101010

12,5
010101010101010
010101010101010

4,3start
goal

28 00 …

99

00 …

99

…

010101010101010
010101010101010

4,4

…

10
…

…

…00 …

99

E.g., given 010101010101010

shortest: 00 01 22 Fwd 00 01 22 outputs 0101
Bwd 22 10 00 outputs 010

D:Wireless
Communication
Network

Problem
We are building a tree by the following procedure

1. Start from n trees of singletons

2. Select two adjacent trees and join their highest-numbered nodes

Compute the largest diameter among the possible trees

1 3 4 2

1 3 4 2

1 3 4 2

1 3 4 2

1 3 4 2

1 3 4 2

1 3 4 2

1 3 4 2

Solution: DP
Let

diam(l,r) = the largest diameter for the interval {n[l], ..., n[r-1]},
height(l,r) = the height of such tree.

Then, we have

diam(l,r) = max {diam(l,m), diam(m+1,r), height(l,m)+height(m+1,r)+1} + 1
where m is the index of the node with the highest value.

Because:

• the diameter is spanned by a path not passing m or passing m, and

• not passing m ó the path is contained in [l..m) or [m+1..r) because of the
construction of the tree.

E:Planning
Railroad
Discontinuation

Problem Description
Compute the cost of a minimum spanning tree (MST) of a
given graph.

The given graph has a huge number of vertices, but has good
symmetry.

Graph
𝐺 = 𝑉, 𝐸 : an (undirected weighted) graph (subway network in a city)

𝑆 = 𝑠" , 𝑠# , … , 𝑠$%# ⊂ 𝑉: subset of 𝑉 (bullet train stations)

𝐺" , 𝐺# , … , 𝐺&%#: 𝑙 copies of 𝐺

・・・ ・・・

𝐺' 𝐺'#$ 𝐺'#&

∈ copy of 𝑆

Cost

𝐺' 𝐺'#$

𝑎'

𝑎'

𝑎'#$

𝑎'#$

𝑑 𝑣, 𝑢 + 𝑏' 𝑑 𝑣, 𝑢 + 𝑏'#$

𝑣

𝑢

𝑣

𝑢

Solution

Kruskal’s algorithm

• 𝐺'&& = 𝑉'&& , 𝐸'&& : whole graph ⊃ 𝐺" , 𝐺# , …

•Sort edges by their cost.

• 𝑇 = 𝑉'&& , ∅ : forest in 𝐺'&& with no edges

•For each edge, determine whether the edge can be added to the forest
𝑇 using the union-find data structure.

This is too slow and uses too much memory

Edges in 𝐺!
connected
component

connected
component

connected
component

connected
component

connected
component

connected
component

∈ copy of 𝑆

In the cases (1) and (2),
whether the red edge can be added to 𝑇 is determined only in 𝐺!.
This is the same for all subgraph 𝐺!.

(1)

(2)

(3)

connected components
in 𝐺! ∩ 𝑇

Preparation

•Apply Kruskal’s algorithm to 𝐺 and make a table

conn[c] := #(connected components of 𝐺 𝑐 containing some 𝑣 ∈ 𝑆)
cost[c] := ∑cost of edges of type (3) with cost ≤ 𝑐

𝐺 𝑐 : subgraph with edges whose costs ≤ 𝑐

connected
component

connected
component

(3)

∈ copy of 𝑆

Edges between 𝐺! and 𝐺!"#
connected
component

connected
component

connected
component

𝐺!

connected component connected
component

𝐺!"#

if 𝑏! > 𝑏!"#

𝑎! 𝑎! 𝑎!

#(edges with cost 𝑎! in an MST) = #(connected components of 𝐺! ∩ 𝑇)
= conn[𝑎! − 𝑏! − 1]
if 𝑏! > 𝑏!"#

Edges between 𝐺! and 𝐺!"#
connected
component

connected
component

connected
component

𝐺!

connected component connected
component

𝐺!"#

if 𝑏! > 𝑏!"#

connected component connected
component

𝐺!"#

contract the blue edges

𝑎! 𝑎! 𝑎!

𝐺! 𝐺!"# 𝐺!"$𝐺!%#
𝑎!%# 𝑎! 𝑎!"#

If the edges with costs 𝑎!%#, 𝑎! , 𝑎!"# are contracted, …

𝐺&

𝑏& = min 𝑏!%#, 𝑏! , 𝑏!"#, 𝑏!"$

・・・ ・・・

Unite!

・・・ ・・・

F:It’s Surely
Complex

Problem Description
Given a prime number p and a positive integer n, compute
the product of all the complex numbers a+bi such that
• a and b are integers between 0 and n, inclusive, and
• a and/or b is not a multiple of p.

The number of the complex numbers can be up to almost
1036, and the output should be in modulo p.

In the following, “mod p” may be omitted.

Problem Description
More visually, compute the product of all the numbers
represented as black dots on the complex plane in the figure
below. Im

Re

0

i

pi

2pi

1 p 2p

1+i

Solution
Since 1 + 𝑖 ⋯ 𝑘 + 𝑘𝑖 = 𝑘! (1 + 𝑖)P, the product of the
numbers on the diagonal is

𝑝 − 1 !
Q
R 𝑛 % 𝑝 ! (1 + 𝑖)(RST)

Q
R U(Q%R)

𝑝 − 1 ! (1 + 𝑖)'%#

𝑝 − 1 ! (1 + 𝑖)'%# in
the sense of mod p

𝑛%𝑝 ! (1 + 𝑖)(%' in
the sense of mod p

The complexity
is 𝑂(𝑝)

Solution
Because 𝑎 + 𝑏𝑖 × 𝑏 + 𝑎𝑖 = 𝑎> + 𝑏> 𝑖, the product in the
triangle areas is ∏[\T

RST 𝑗]! 𝑖∑]! where 𝑐[is half the number of
𝑎, 𝑏 s.t. 𝑎> + 𝑏> = 𝑗.

The complexity is
𝑂 𝑝 log 𝑛 if 𝑐!s
are available

a+bi

b+ai

Solution
The number of 𝑎, 𝑏 s.t. 𝑎> + 𝑏> = 𝑗 (0 ≤ 𝑎, 𝑏, 𝑗 < 𝑝) is calculated
by performing self-convolution of 𝑑<, … , 𝑑RST, 0, … , 0 where 𝑑P
is the number of 𝑎s s.t. 𝑎> = 𝑘 (0 ≤ 𝑗 < 𝑝).

The complexity is 𝑂 𝑝 log 𝑝 with
Fast Fourier Transform (FFT)

𝑑<, … , 𝑑RST, 0, … , 0

𝑑<𝑑<, … , ∑P"UP#\P 𝑑P"𝑑P#, … , 𝑑RST𝑑RST

Self-convolution
This element
is not used

These numbers include the cases where
a = b, and so need some adjustments

Solution
FFT Convolution is efficient, but FFT over the complex field with
double precision FP numbers doesn’t have enough precision.

The precision problem is solved by dividing the area like the
following.

The product of a square
area is computed as

described so far.

The product of a pair of
vertical and horizontal
areas is computed as

described so far.

The product of a pair of
vertical and horizontal

areas is computed
similarly.

Solution
Although the number of square and rectangle areas can be very
large, at most four of them are unique and the others are replicas
in the sense of mod p.

This is unique

These are the same in
the sense of mod p

These are the same in
the sense of mod p

These are the same in
the sense of mod p

These are the same in
the sense of mod p

The Last Comment
A straightforward FFT program in Java/Kotlin may create and
destroy many objects, and so it can be rather slow. To make
matters worse, the Java execution environment of today’s contest
uses Serial GC.

G:Genealogy of
Puppets

Problem Description
Generate a binary tree under the following constraints:

l The tree consists of 𝑛 (≤ 300) vertices.

l Vertices are numbered from 1 to 𝑛.

l Vertex 𝑖 has at least 𝑥! and at most 𝑦! children.

l If vertex 𝑖 has any child, there must be a child whose
index is larger than 𝑖.

How many trees (modulo 10" + 7) can be generated?

Examples
Sample Input 1
𝑛 = 3
𝑥T, 𝑦T = (0,1)
𝑥>, 𝑦> = (1,2)
𝑥_, 𝑦_ = (0,2)

2

1 3

1

2 3

2

1

3

✗ ✗ ✓

Vertex 1 cannot
have 2 children.

At least 1 index
of children must
be larger index
than their
parent’s index.

The tree
satisfies all
constraints.

Solution
Basic strategy: Build subtrees by adding vertices from
vertex 𝑛 to vertex 1.
Dynamic Programming memorizing
l the number of roots, and

l the number of unassigned edges
(connected to smaller-index vertices).
𝑛

𝑛

𝑛 − 1

𝑛

𝑛 − 1 𝑛 − 2

𝑛

𝑛 − 1

𝑛 − 2

𝑛 − 3

How to add a new vertex?
To add a new vertex 𝑖, you need to consider the indices of
the parent 𝑝! and the children 𝑐!,$%&', 𝑐!,(!)*'.

Parent edge Left child edge*

𝑝! > 𝑖 𝑝! < 𝑖

(decide 𝑝! later)
No child

✗

𝑐!,+,-. > 𝑖

𝑖 𝑖

𝑝!

*) 𝑐!,/!01. can be determined in the similar way.

𝑖 𝑖 𝑖

𝑐!,+,-.

𝑐!,#$%& < 𝑖

(decide 𝑐!,#$%& later)

How to add a new vertex?
How to deal with the loop case?

Key insight: whatever the parent is, there is exactly
one root node cannot be used as the child.
→ #(child tree candidates) is always #(all trees) – 1.
The overall time complexity is O(𝑛&).

✗
New vertex tree

No tree can be used as
both parent and child
at the same time.

H: Cancer DNA

Problem Description
You are given 𝑚 DNA patterns 𝑃+, … , 𝑃, of length 𝑛.
The task is to approximate

Pr
-∼ /,0,1,2 &[𝑆 matches 𝑃! (∃𝑖)]

up to a 5% multiplicative error.

Example: 𝑃+ = "AC?“ , 𝑃3 = "A?T“
ACA, ACG, ACC, ACT, AAT, AGT, ATTmatches 𝑃+ or 𝑃3.

Pr
-
[𝑆 matches 𝑃+ or 𝑃3] =

7
44
= 0.109375.

A First Attempt
• Random sampling

Randomly choose 𝑘 samples 𝑆%, … , 𝑆& ∼ 𝐴, 𝐺, 𝐶, 𝑇 ',
and approximate the probability by

𝑆(𝑆(matches 𝑃%, … , 𝑃)
𝑘 .

• Issue
However, if Pr

*
𝑆 matches 𝑃%, … , 𝑃) ≈ 0, the

numerator is 0 with high probability, in which case the
output is not a good approximation in terms of
multiplicative error.
(This is good approximation in terms of an additive error, though.)

Solution
• Idea: Random sampling from a smaller space!

• Let 𝑈 ≔ 𝑖, 𝑆 𝑆 matches 𝑃+ . (i.e., the disjoint union of DNA sequences that match 𝑃!)

• Let 𝐺 ≔ 𝑖, 𝑆 ∈ 𝑈 𝑖 = min 𝑗|𝑆 matches 𝑃(.
(If 𝑆 matches 𝑃! but not 𝑃#, … , 𝑃!%#, then 𝑖, 𝑆 ∈ 𝐺.)

• Our goal is to compute 43' ⋅ 𝐺 = 43' ⋅ 𝑈 ⋅ 4
|6|

.

• |𝑈| can be easily computed by counting the number of ?’s.

Uniformly sample 𝑖, 𝑆 ∼ 𝑈 and check if 𝑖, 𝑆 ∈ 𝐺. (in time 𝑂 𝑛𝑚)

• 𝐺 /|𝑈| can be approximated by random sampling.

Since 2
3
≥ #

4
, the random sampling can estimate 2

3
up to a 1 ± 𝜖 error in time 𝑂 4

5"
.

• Overall, the probability can be (1 ± 𝜖)-approximated
in time 𝑂 𝑛𝑚 ⋅ 𝑚/𝜖< with high probability.

Background

•A randomized algorithm that computes a (1 ± 𝜖)-
multiplicative approximation of a solution in time poly 𝑛, +

5
is called FPRAS (fully polynomial-time randomized approximation
scheme).

•The algorithm is a special case of FPRAS for DNF
counting.

I: “Even” Division

Problem Description
Divide a graph into connected subgraphs
with even number of nodes
(#node, #edge ≦ 100,000)

0 1 2 3

4 5 6 7

Any such division is
accepted, as long
as it does not allow
further division.

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

Approach
1. Divide into two connected

even-nodes subgraphs
2. Repeat it until no further

division is possible

Divide to two: Trees

[Key insight]

Dividing to two parts is easy for trees.
Let’s think about the case of trees first.

Divide to two: Trees

1

odd

odd odd

even
A node with even degree

→
At least one subtree
has even nodes
(if not, 1 + odd*even = odd)

All nodes have odd degrees
→

no division is possible
(proof by induction)

Divide to two: General case
Take a spanning tree.

・ Even degree node → Divide at the node

・ All degrees odd → Replacing an edge with a non-
tree edge gives us two even-degree nodes

+1

odd

odd

odd

odd

-1

✂

Repeat
• Naively repeating the process takes
Ω(NM) time, but
• You don’t need to recompute the
spanning tree every time.
•Take a spanning tree (DFS tree has a good

structure) of the whole graph only once
•Run a one-pass bottom-up traversal to find

even-degree nodes and non-tree edges

Background
• The division is a kind of generalization
of the perfect matching (= all subgraphs
have 2 nodes, instead of even nodes)
• A. D. Scott. On induced subgraphs with all degrees

odd. Graphs and Combinatorics, 17(3):539–553,
2001.

J:The Cross
Covers Everything

Problem
1. Given n points

2. Select a pair of them

3. Create a cross shaped area

4. Count how many pairs that covers all given points

Amendment
The problem text is missing the condition

A pair <p, q> must satisfy xp ≤ xq and yp ≤ yq

In this slide we consider the problem J with the condition

Solution
1. The upper-right candidates A: no more points in upper right area

2. The lower-left candidates B: no more points in lower left area

A

B

Solution
1. Select an upper-right point (ax, ay) from A

2. x-limit = min{ x | (x, y) in the given set, ay ≤ y}

(ax, ay)

x limit

Solution
1. Select an upper-right point (ax, ay) from A

2. x-limit = min{ x | (x, y) in the given set, ay ≤ y}

3. y-limit = min{ y | (x, y) in the given set, ax ≤ x}

(ax, ay)

y limit

Solution
1. The valid lower-left points (bx, by) must satisfy

bx ≤ x-limit and by ≤ y-limit

2. If B is ordered by x-increasing and y-decreasing, valid lower-left
points are consecutive in B

3. Count the valid points in B with binary search algorithm

(ax, ay)

y limit

x limit

K: Distributing
the Treasure

Problem Setting
A B C

1 2 3 4

1 2 3 4

A 10 9 9 5

B 4 4 4 4

C 100 2 1 1

Value Estimation

Distribute Items to Members
without Making Anyone Angry

Problem Setting
A B C

1 2 3 4

Value Estimation

1 2 3 4

A 10 9 9 5

B 4 4 4 4

C 100 2 1 1

10 ≥ 9

1 < 2

angry
NOT

angry

Distribute Items to Members
without Making Anyone Angry

Problem Setting
A B C

1 2 3 4

Value Estimation

1 2 3 4

A 10 9 9 5

B 4 4 4 4

C 100 2 1 1

10 ≥ 9
4 ≥ 4

NOT
angry

2 ≥ 0

Distribute Items to Members
without Making Anyone Angry

Problem Setting
A B C

1 2 3 4

1 2 3 4

A 10 9 9 5

B 4 4 4 4

C 100 2 1 1

Value Estimation

𝑛: # of Members
𝑚: # of Items
𝑣),+ : Value of Item 𝑗 for Member 𝑖

𝑛𝑚 ≤ 2×10,
1 ≤ 𝑣),+ ≤ 2×10,

Distribute Items to Members
without Making Anyone Angry
(Envy-Free up to any item; EFX)

Solution
If 𝑛 ≥ 𝑚, then you can distribute the items arbitrarily
as long as every member receives at most one item.
→ Assume 𝑛 < 𝑚, and then 𝑛 ≤ 447 as 𝑛< < 𝑛𝑚 ≤ 2×10=

𝑛: # of Members
𝑚: # of Items
𝑣!,6: Value of Item 𝑗 for Member 𝑖

𝑛𝑚 ≤ 2×107
1 ≤ 𝑣!,6 ≤ 2×107

Solution
If 𝑛 ≥ 𝑚, then you can distribute the items arbitrarily
as long as every member receives at most one item.
→ Assume 𝑛 < 𝑚, and then 𝑛 ≤ 447 as 𝑛< < 𝑛𝑚 ≤ 2×10=

You can always find a good distribution in O 𝑛< 𝑚− 𝑛 time!

[Idea]
Distribute the items in descending order of values appropriately,
where sometimes exchange the sets of received items.

𝑛: # of Members
𝑚: # of Items
𝑣!,6: Value of Item 𝑗 for Member 𝑖

𝑛𝑚 ≤ 2×107, 𝑛 ≤ 447
1 ≤ 𝑣!,6 ≤ 2×107

≤ 4×10-

Solution
[Idea]
Distribute the items in descending order of values appropriately,
where sometimes exchange the sets of received items.

𝑛: # of Members
𝑚: # of Items
𝑣!,6: Value of Item 𝑗 for Member 𝑖

𝑛𝑚 ≤ 2×107, 𝑛 ≤ 447
1 ≤ 𝑣!,6 ≤ 2×107

1 2 3 4

A 10 9 9 5

B 100 2 1 1

Solution
[Idea]
Distribute the items in descending order of values appropriately,
where sometimes exchange the sets of received items.

𝑛: # of Members
𝑚: # of Items
𝑣!,6: Value of Item 𝑗 for Member 𝑖

𝑛𝑚 ≤ 2×107, 𝑛 ≤ 447
1 ≤ 𝑣!,6 ≤ 2×107

1 2 3 4

A 10 9 9 5

B 100 2 1 1

Solution
[Idea]
Distribute the items in descending order of values appropriately,
where sometimes exchange the sets of received items.

𝑛: # of Members
𝑚: # of Items
𝑣!,6: Value of Item 𝑗 for Member 𝑖

𝑛𝑚 ≤ 2×107, 𝑛 ≤ 447
1 ≤ 𝑣!,6 ≤ 2×107

1 2 3 4

A 10 9 9 5

B 100 2 1 1

Solution
[Idea]
Distribute the items in descending order of values appropriately,
where sometimes exchange the sets of received items.

𝑛: # of Members
𝑚: # of Items
𝑣!,6: Value of Item 𝑗 for Member 𝑖

𝑛𝑚 ≤ 2×107, 𝑛 ≤ 447
1 ≤ 𝑣!,6 ≤ 2×107

1 2 3 4

A 10 9 9 5

B 100 2 1 1

Solution
[Idea]
Distribute the items in descending order of values appropriately,
where sometimes exchange the sets of received items.

𝑛: # of Members
𝑚: # of Items
𝑣!,6: Value of Item 𝑗 for Member 𝑖

𝑛𝑚 ≤ 2×107, 𝑛 ≤ 447
1 ≤ 𝑣!,6 ≤ 2×107

1 2 3 4

A 10 9 9 5

B 100 2 1 1

1 2 3 4

A 10 9 9 5

B 100 2 1 1

3 < 100

10 < 18

Angry

Angry

Solution
[Idea]
Distribute the items in descending order of values appropriately,
where sometimes exchange the sets of received items.

𝑛: # of Members
𝑚: # of Items
𝑣!,6: Value of Item 𝑗 for Member 𝑖

𝑛𝑚 ≤ 2×107, 𝑛 ≤ 447
1 ≤ 𝑣!,6 ≤ 2×107

1 2 3 4

A 10 9 9 5

B 100 2 1 1Exchange

1 2 3 4

A 10 9 9 5

B 100 2 1 1

Both are fine!

→

Solution

𝑛: # of Members
𝑚: # of Items
𝑣!,6: Value of Item 𝑗 for Member 𝑖

𝑛𝑚 ≤ 2×107, 𝑛 ≤ 447
1 ≤ 𝑣!,6 ≤ 2×107

Members

Item Sets

Envy (NOT Angry)
Assign

[Idea]
Distribute the items in descending order of values appropriately,
where sometimes exchange the sets of received items.

Solution

𝑛: # of Members
𝑚: # of Items
𝑣!,6: Value of Item 𝑗 for Member 𝑖

𝑛𝑚 ≤ 2×107, 𝑛 ≤ 447
1 ≤ 𝑣!,6 ≤ 2×107

Members

Item Sets

Envy (NOT Angry)
Assign

[Idea]
Distribute the items in descending order of values appropriately,
where sometimes exchange the sets of received items.

NOT envied from anyone
→ You can add the next item here

Solution

𝑛: # of Members
𝑚: # of Items
𝑣!,6: Value of Item 𝑗 for Member 𝑖

𝑛𝑚 ≤ 2×107, 𝑛 ≤ 447
1 ≤ 𝑣!,6 ≤ 2×107

Members

Item Sets

Envy (NOT Angry)
Assign

[Idea]
Distribute the items in descending order of values appropriately,
where sometimes exchange the sets of received items.

NO such non-envied set
→ A cycle exists

Solution

𝑛: # of Members
𝑚: # of Items
𝑣!,6: Value of Item 𝑗 for Member 𝑖

𝑛𝑚 ≤ 2×107, 𝑛 ≤ 447
1 ≤ 𝑣!,6 ≤ 2×107

Members

Item Sets

Envy (NOT Angry)
Assign

[Idea]
Distribute the items in descending order of values appropriately,
where sometimes exchange the sets of received items.

NO such non-envied set
→ A cycle exists
→ Exchange along it

Solution

𝑛: # of Members
𝑚: # of Items
𝑣!,6: Value of Item 𝑗 for Member 𝑖

𝑛𝑚 ≤ 2×107, 𝑛 ≤ 447
1 ≤ 𝑣!,6 ≤ 2×107

Members

Item Sets

Envy (NOT Angry)
Assign

[Idea]
Distribute the items in descending order of values appropriately,
where sometimes exchange the sets of received items.

After exchange, for everyone,
the estimated values increase
→ Max-weight matching is enough!

Solution

𝑛: # of Members
𝑚: # of Items
𝑣!,6: Value of Item 𝑗 for Member 𝑖

𝑛𝑚 ≤ 2×107, 𝑛 ≤ 447
1 ≤ 𝑣!,6 ≤ 2×107

[Procedure]
1. While 𝑗 = 1, 2,… ,𝑚
2. If no non-envied item set exists
3. Find a max-weight matching

in the assign-envy graph and exchange
4. Add item 𝑗 to some non-envied item set 𝑋+

(Nobody gets angry by this addition)

Solution

𝑛: # of Members
𝑚: # of Items
𝑣!,6: Value of Item 𝑗 for Member 𝑖

𝑛𝑚 ≤ 2×107, 𝑛 ≤ 447
1 ≤ 𝑣!,6 ≤ 2×107

[Procedure]
1. While 𝑗 = 1, 2,… ,𝑚
2. If no non-envied item set exists
3. Find a max-weight matching

in the assign-envy graph and exchange
4. Add item 𝑗 to some non-envied item set 𝑋+

(Nobody gets angry by this addition)

O 𝑛H time by Hungarian method?
→ We can update the current assignment in O 𝑛< time

Solution

𝑛: # of Members
𝑚: # of Items
𝑣!,6: Value of Item 𝑗 for Member 𝑖

𝑛𝑚 ≤ 2×107, 𝑛 ≤ 447
1 ≤ 𝑣!,6 ≤ 2×107

O 𝑛H time by Hungarian method?
→ We can update the current assignment in O 𝑛< time

Why?

Because no improving cycle exists
for the assignment just before adding item 𝑗 − 1,
all the new cycles must intersect the item set containing 𝑗 − 1.

Solution

𝑛: # of Members
𝑚: # of Items
𝑣!,6: Value of Item 𝑗 for Member 𝑖

𝑛𝑚 ≤ 2×107, 𝑛 ≤ 447
1 ≤ 𝑣!,6 ≤ 2×107

O 𝑛H time by Hungarian method?
→ We can update the current assignment in O 𝑛< time

Why?

Because no improving cycle exists
for the assignment just before adding item 𝑗 − 1,
all the new cycles must intersect the item set containing 𝑗 − 1.
→ It suffices to find a shortest cycle intersecting a vertex,

which has exactly one leaving edge (the assign edge)
→ Just find a shortest path in DAG (by removing that edge)!

Solution

𝑛: # of Members
𝑚: # of Items
𝑣!,6: Value of Item 𝑗 for Member 𝑖

𝑛𝑚 ≤ 2×107, 𝑛 ≤ 447
1 ≤ 𝑣!,6 ≤ 2×107

O 𝑛H time by Hungarian method?
→ We can update the current assignment in O 𝑛< time

This is required only after every item set has at least one item
→ O 𝑛< 𝑚− 𝑛 time in total 𝑛< 𝑚− 𝑛 ≤ 4×10I

Other solutions
- Using primal-dual update of weighted matching problem
- Just resolve a cycle in the assign-envy graph greedily

(very fast but no better bound is known than O 𝑛H𝑚 time)

