Commentaries on Problems

JUDGE TEAM
ICPC 2022 ASIA YOKOHAMA REGIONAL

Welcome to On-Site Contest

We thank the organizers for working hard to manage to have this on-site contest for the first time in the three years.

Judges developed an easier problem set than last year for on-site contest

- No access to the Internet
- No simultaneous coding

Note: two contestants could not join, which may affect the results of their teams.

Interactive Problem

We introduced an interactive problem for the first time.

After careful discussion, we decided to use an easy interactive problem.

Problem vs. \#Teams @Freeze

Problem vs. \#Teams @Freeze estimated difficulty order

\#Solved vs \#Teams

Comparison with Last Year

A: Hasty Santa Claus

PROPOSER: KAZUHIRO INABA AUTHOR: TOMOHIRO OKA

Problem

-Given n intervals and an integer k
" $\left[a_{i}, b_{i}\right]$
Find a date assignment for each intervals
" $a_{i} \leqq$ date $_{i} \leqq b_{i}$
"The frequency of a date should be no more than k
"\#\{i | date $\left.{ }_{i}=\mathrm{d}\right\} \leqq k$

Sample Input 1 " $\mathrm{n}=5, \mathrm{k}=1$

Solution

-Greedy assignment
-Select a house that has minimum b_{i}

- Loop n times
- i the house not assigned yet has minimum b_{i}
- d earliest date that is in $\left[a_{i}, b_{i}\right]$ and $c_{c o u n t}^{d}<k$
- date i d
- count $_{d}+=1$

B: Interactive Number Guessing

PROPOSER: MITSURU KUSUMOTO AUTHOR:MITUSRU KUSUMOTO

Problem

- The first interactive problem in this regional!
- Judge has a secret number x.
- You should guess it by using queries, where you specify a number a and you receive digitsum $(a+x)$.
- Query limit ≤ 75
- $0 \leq a, x<10^{18}$

Solution

Obtain $d_{0}=$ digitsum (x) by query $a=0$.
Now assume that you query $a=500$.

- If x is like $x=$..4.. or $x=. .3$.. ("." stands for arbitrary number in decimal notation), then $\operatorname{digitsum}(x+a)=d_{0}+5$ is returned.
- If x is like $x=. .5$.. or $x=. .6$.., then digitsum $(x+a)<d_{0}+5$ is returned due to carry.
Using this observation, you can identify each digit by binary search.
Total query required is $1+18 \cdot\left\lceil\log _{2} 10\right\rceil=73$.

G: Remodeling the Dungeon

PROPOSER: TOMOHARU UGAWA AUTHOR: YUTARO YAMAGUCHI

Story

Enhance the security of the castle by remodeling the dungeon.

9

15

Story

 11
Enhance the security of the castle by remodeling the dungeon.

9
15

Problem

$$
\begin{aligned}
& n=h \times w \leq 2.5 \times 10^{5} \\
& \ell<2 n \leq 5 \times 10^{5}
\end{aligned}
$$

Given a tree of $n=h \times w$ vertices.
Given $\ell=(h-1) \times w+h \times(w-1)$ possible new edges.
Maximize the distance between s and t by removing one edge and adding one new edge instead so that the result is also a tree.

Solution

$$
\begin{aligned}
& n=h \times w \leq 2.5 \times 10^{5} \\
& \ell<2 n \leq 5 \times 10^{5}
\end{aligned}
$$

Maximize the distance between s and t by removing one edge and adding one new edge instead so that the result is also a tree.

The new route through $\{u, w\}$ consists of $\underline{a+d+1+e+c}$ edges.

$$
\begin{aligned}
& \operatorname{dist}(s, u)+\operatorname{dist}(t, w)+1 \\
& =\operatorname{dist}(s, w)+\operatorname{dist}(t, u)-2 b+1 \\
& <\operatorname{dist}(s, w)+\operatorname{dist}(t, u)+1
\end{aligned}
$$

Solution

$$
\begin{aligned}
& n=h \times w \leq 2.5 \times 10^{5} \\
& \ell<2 n \leq 5 \times 10^{5}
\end{aligned}
$$

Maximize the distance between s and t by removing one edge and adding one new edge instead so that the result is also a tree.

1. Compute $\operatorname{dist}(s, v)$ and $\operatorname{dist}(t, v)$ for all vertices $v . \quad \Theta(n)$ time
2. For each possible new edge $\{u, w\}$,
if $\operatorname{dist}(s, u)+\operatorname{dist}(t, w) \neq \operatorname{dist}(s, w)+\operatorname{dist}(t, u)$,
$\Theta(\ell)$ time then the minimum of them +2 is a candidate of the answer.

The new route through $\{u, w\}$ consists of $a+d+1+e+c$ edges.

$$
\begin{aligned}
& \operatorname{dist}(s, u)+\operatorname{dist}(t, w)+1 \\
& =\operatorname{dist}(s, w)+\operatorname{dist}(t, u)-2 b+1 \\
& <\operatorname{dist}(s, w)+\operatorname{dist}(t, u)+1
\end{aligned}
$$

D: Move One Coin

PROPOSER: KAZUHIRO INABA AUTHOR: KAZUHIRO INABA

Problem

Match the left pattern to the right pattern (up to rotation), by moving exactly one coin.

Problem

Match the left pattern to the right pattern (up to rotation), by moving exactly one coin.

Idea

If the src \& dst patterns are already on the same location, we just need to scan and spot the two differences.

How to find the right...
\rightarrow rotation? \rightarrow try all 4 cases! parallel displacement?

Solution 1

If the lexicographically $1^{\text {st }}$ coin does not move, the coin stays $1^{\text {st }}$ or $\mathbf{2}^{\text {nd }}$.

If it moves, $\mathbf{2}^{\text {nd }}$ coin becomes $1^{\text {st }}$ or $2^{\text {nd }}$.

Try 4 offsets matching src

 $\left\{1^{\text {st }}, 2^{\text {nd }}\right\}$ with dst $\left\{1^{\text {st, }}, 2^{\text {nd }}\right\}!$!
Solution 2

- If coins aren't many ($\mathrm{N}<500$), brute force search. $\mathrm{O}\left(\mathrm{N}^{3}\right)$ by testing all (src, dst) pairs.
- If coins are many ($\mathrm{N}>=500$), one-coin move does not change the average of $x y$-coords too much. (Because max possible move is within ± 1000.) Try the offsets matching average points within ± 2 !

More Solutions...

Two patterns are very similar, because after all they differ by only one coin.

Exploit such similarity in some way, then you'll reach to a solution.

- Many other approaches are possible.

H: Cake Decoration

PROPOSER: AKIFUMI IMANISHI
AUTHOR: AKIFUMIIMANISHI

Problem

Find the number of combinations of four integers tuple (a,b,c,d):

* a,b,c,d is different
* $L<=a+b<R$
* abcd <= X
* $(\mathrm{a}+1) \mathrm{bcd}>\mathrm{X}$
* $a(b+1) c d>x$
* $a b(c+1) d>x$
* $a b c(d+1)>x$

Solution

Sort (a,b,c,d) by increasing order * $a<b<c<d$

* abcd <= X < abc (d+1)

Find (*4) of sum of numbers of:

* $L<=a+b<R$
* $L<=a+c<R$
* $\mathrm{L}<=\mathrm{a}+\mathrm{d}<\mathrm{R}$
* $\mathrm{L}<=\mathrm{b}+\mathrm{c}<\mathrm{R}$
* $\mathrm{L}<=\mathrm{b}+\mathrm{d}<\mathrm{R}$
* $\mathrm{L}<=\mathrm{c}+\mathrm{d}<\mathrm{R}$

Solution

* abcd <= $\mathrm{x}<\mathrm{abc}(\mathrm{d}+1)$
$\Leftrightarrow=>$ floor (X / abc)

Algorithm:
For a in 1.. $\mathrm{X}^{\wedge}(1 / 4)$ For b in 1.. $\mathrm{X}^{\wedge}(1 / 3)$

Binary search:
Count the number of c

Time complexity

Algorithm:
For a in 1.. $\mathrm{X}^{\wedge}(1 / 4)$
For b in 1.. $\mathrm{X}^{\wedge}(1 / 3)$
Binary search:
Count the number of c
Loop: $\sum_{a=1}^{X^{1 / 4}}\left(\frac{X}{a}\right)^{1 / 3} \approx \int_{1}^{X^{1 / 4}}\left(\frac{X}{a}\right)^{1 / 3} d a=O\left(X^{1 / 2}\right)$
Time complexity: $O(\sqrt{X} \log X)$

J: Traveling Salesman in an Island

PROPOSER: SHUICHI HIRAHARA AUTHOR: SHUICHI HIRAHARA

Problem

Given a simple polygon and points on its boundary, solve the Traveling Salesperson Problem (TSP).

Problem

Given a simple polygon and points on its boundary, solve the Traveling Salesperson Problem (TSP).

Solution

\Rightarrow TSP is NP-hard, but this special case is easy.
$>$ Without loss of generality, the shortest tour visits the points in clockwise order.

Solution

1. Sort all the points in clockwise order.
2. Compute the shortest distance (inside the polygon) between i-th and $(i+1)$-th vertices.
3. Output the sum of the distances.

E: Incredibly Cute Penguin Chicks

PROPOSER: SOH KUMABE
AUTHOR: SOH KUMABE

Story

Count the way to cut given string into ICPC-ish substrings.

Design

The string consists of I, C, P is
ICPC-ish if

- two of them appear same number of times, and
- the other one appears more than them.

Input and Output

1. Input: string S.
2. Output: \#ways to cut S into ICPC-ish substrings, modulo 998244353.

Solution

DP[t]: \#ways to cut first t letters into ICPC-ish substrings

$O\left(|S|^{2}\right)$, TLE

Solution

ICPC

Solution

$$
\mathrm{I}>\mathrm{P}=\mathrm{C}
$$

Solution

DP[0]=sum of
DP values on
these directions

Solution

Use Fenwick Tree to compute the sum

DP[O]=sum of

DP values on
these directions

$O(|S| \log |S|), \mathrm{AC}$

C: Secure the Top Secret

PROPOSER: MASATOSHI KITAGAWA AUTHOR: MASATOSHI KITAGAWA

Problem

A grid graph with some special edges (shutters) is given.
Find the minimum number of shutters to close to satisfy

1. There exists a path from S to T with no closed shutters on it.
2. Any path from U to T contains at least two closed shutters.

shutter

- closed shutter

Solution

Find the minimum cost flow in the 'dual' graph.

Graph

- vertex of a cell \rightarrow vertex
- wall \rightarrow black edge (cost 0, capacity ∞)
- shutter \rightarrow dotted edge (cost 1, capacity 1)

Remove an outer wall (edge (p, q)) of U . Remove an outer wall of S (and T).

Translation

Minimum U-T cut in the original graph in which S and T belongs to the same connected component

Shortest $p-q$ path with no black vertices

The bold edges $=$ the walls used in the left-hand rule from S to T

Translation

The original problem
= Find the minimum cost of shutter-disjoint two $p-q$ paths with no black vertices.
= Find the minimum cost of flows through no black vertices with amount of flow 2 .

K: New Year Festival

PROPOSER: SHINYA SHIROSHITA AUTHOR: SHINYA SHIROSHITA

Problem Overview

You need to schedule n events.
Each event has a polygonal line cost function whose input is the start time.
You need to calculate the minimum total costs such that no two events have overlap.

Consideration

Each solution consists of a series of consecutive events (sequences).
We can assume that each sequence has an event whose start time is at a vertex of its cost function.

Proof idea:

We can slide the sequence without increasing the total cost. This slide ends with either of

- Some event reaches a vertex of its cost function, or
- Collide with another sequence.
\rightarrow We can merge both sequences and continue sliding.

Some event starts at one of its vertices of the $\xrightarrow[\text { time }]{ }$ cost function

Solution

Dynamic Programming (DP) memorizing vertices of cost functions whose events' start times are at the vertices (vertices with events).

- DP State: [previous vertex w/ event][used event set].
- Events between vertices w/ events are appended to either the left or the right event. \rightarrow Next slide

Solution

We can precompute the minimum cost for appending interval events to left/right in $O\left(m^{2} 3^{n}\right)$ where m is the total number of the vertices of the cost functions. $\left(3^{n}=(\text { left, right, outside })^{n}\right)$

The main DP transition part can also be calculated in $O\left(m^{2} 3^{n}\right) \cdot\left(3^{n}=(\text { used, use now, not used })^{n}\right)$

F: Make a Loop

PROPOSER: YOICHI IWATA AUTHOR: YOICHI IWATA

Problem

Given a set of arcs with a right central angle, is it possible to construct a single loop using all the arcs?

Necessary condition

Classify arcs into 4 groups.

$S_{-,-}$

$S_{+,-}$

$S_{+,+}$

$S_{-,+}$

Necessary condition (1)

Necessary condition (2)

$$
\begin{aligned}
&\left|S_{-,-}\right| \equiv\left|S_{-,+}\right| \equiv\left|S_{+,-}\right| \equiv\left|S_{+,+}\right|(\bmod 2) \\
& S_{-,-}, S_{-,+}, S_{+,-} S_{+,+} \neq \emptyset
\end{aligned}
$$

These are sufficient

$$
\begin{gathered}
\{0, \ldots, n-1\}=S_{-,-} \sqcup S_{-,+} \sqcup S_{+,-} \sqcup S_{+,+} \\
\sum_{i \in S_{-,-} \cup S_{-,+}} r_{i}=\sum_{i \in S_{+,-} \cup S_{+,+}} r_{i} \\
\sum_{i \in S_{-,-} \cup S_{+,-}} r_{i}=\sum_{i \in S_{-,+} \cup S_{+,+}} r_{i} \\
\left|S_{-,-}\right| \equiv\left|S_{-,+}\right| \equiv\left|S_{+,-}\right| \equiv\left|S_{+,+}\right|(\bmod 2) \\
S_{-,-}, S_{-,+} S_{+,-}, S_{+,+} \neq \emptyset
\end{gathered}
$$

This can be solved in $O\left(n^{3} r^{2}\right)$ time using subset sum DP, but too slow $: \%$

Equivalent conditions

Define $S_{-, *}:=S_{-,-} \cup S_{-,+}, \ldots$
Then $S_{-,-}=S_{-, *} \cap S_{*,-}, \ldots$

Equivalent conditions

$$
\begin{gathered}
\{0, \ldots, n-1\}=S_{-, *} \sqcup S_{+, *}=S_{*,-} \sqcup S_{*,+} \\
\sum_{i \in S_{-, *}} r_{i}=\sum_{i \in S_{+, *}} r_{i} \\
\sum_{i \in S_{*,-}} r_{i}=\sum_{i \in S_{*,+}} r_{i} \\
\left|S_{-, *}\right| \equiv\left|S_{+, *}\right| \equiv\left|S_{*,-}\right| \equiv\left|S_{*,+}\right| \equiv 0(\bmod 2) \\
S_{-, *} S_{+, *} S_{*,-}, S_{*,+} \neq \emptyset, S_{-, *} \neq S_{*,-}
\end{gathered}
$$

\Leftrightarrow there are at least two even bisections

Algorithm

Compute the number of even bisections in $O\left(n^{2} r\right)$ time using subset sum DP.

If the number ≥ 2, answer Yes; otherwise, answer No.

I: Quiz Contest

PROPOSER: RYOTARO SATO
 AUTHOR: RYOTARO SATO

Problem Summary

- Quiz Contest by n participants is ongoing
- The first participant to answer the goal number of questions is winner
- Participant i can answer a_{i} of m questions not proposed yet
- Participant i has to answer additional b_{i} questions to win
- Count the number of question orders such that participant i will be the winner for each $i=1, \ldots, n$, modulo $119 \times 2^{23}+1$
- Constraints:
- $1 \leq n \leq m \leq 2 \times 10^{5}$
- Each question is answered by exactly one participant $\left(a_{1}+\cdots+a_{n}=m\right)$.
- Every participant has a chance to win ($b_{i} \leq a_{i}$).

Solution Overview

- Build tree structure of participants
- We want to "distribute" winning probability of subtree p_{S} from root $(\{1,2, \ldots, n\})$ and finally get $p_{\{i\}}$ of each participant i

Example
($n=4$)

Solution Structure

- Key idea of fast counting: Two step divide-and-conquer strategy

1. Bottom-up DP to solve the auxiliary problem: "When will the winner be decided?"
2. Top-down DP to solve the main problem: "Who will be the winner and when?," by fully utilizing previous results.

- Both steps are significantly speed up by Fast Fourier Transform (FFT) and convolution!
- Note: You can use 3 as the primitive root of multiplicative group of $\mathbb{F}_{119 \times 2^{23}+1}$ to find primitive 2^{d}-th roots $(d \leq 23)$ for FFT.
- Overall complexity: $O(m \log n \log m)$

Notation

Introduce symbols:

- $\quad U:=($ set of all participants $)=\{1, \ldots, n\}$
- $a(S):=\sum_{i \in S} a_{i}$
- $\rightarrow a(U)=m$ holds.
- $f(S, i):=$ (\# of perms. of $a(S)$ questions s.t. the winner is decided just after i-th question)

$$
(i=1, \ldots, a(S))
$$

Step 1: Bottom-up DP to solve "When someone wins?"

- Start from $\{i\} \mathrm{s}$ for $i=1, \ldots, n$. Merge them to make U.
- $f(S+T, \cdot)$ can be calculated from only $f(S, \cdot)$ and $f(T, \cdot)$:
$f(S+T, i)=\binom{a(S+T)}{a(S)}^{-1} \sum_{j, k=i}\left(f(S, j)\left(\begin{array}{c}a(T) \\ k=k+1\end{array} f\left(T, k^{\prime}\right)\right)\binom{j-1+k}{k}+f(T, k)\binom{a(S)}{\sum_{j=i+1} f\left(S, j^{\prime}\right)}\binom{j+k-1}{j}\right)\binom{a(S+T)-i}{a(T)-k}$
\rightarrow Convolution, $O(a(S+T) \log a(S+T))$

Step 2: Top-down DP to solve "When and Who wins?"

- Consider uniform distribution over $a(U)$! permutations and introduce $g(S, i):=P\left(\right.$ The winner is in $\left.S \left\lvert\, \begin{array}{l}\text { If the questions answered by } U-S \text { are erased, } \\ \text { the winner is decided just after } i \text {-th question }\end{array}\right.\right)$
$\rightarrow g(S, \cdot)$ can be calculated from ONLY $f(T, \cdot)$ AND $g(S+T, \cdot)$:

$$
g(S, i)=\binom{a(S+T)}{a(S)}^{-1} \sum_{j=i}^{i+a(T)}\binom{j-1}{i-1}\binom{a(S+T)-j}{a(S)-i}\left(\sum_{k=j-i+1}^{a(T)} f(T, k)\right) g(S+T, j) \rightarrow \text { Convolution again! }
$$

- Finally, output $a(U)!g\left(\{i\}, b_{i}\right)$ for each i.

