Commentaries on Problems

JUDGE TEAM
ICPC 20232024 ASIA YOKOHAMA REGIONAL

BLACK FRIDAY

Sorry about the accident ...

Solved vs. Teams @Freeze

\% of teams

Problem vs. \#Teams @Freeze

 estimated difficulty order

A: Yokohama Phenomena

PROPOSER: KAZUHIRO INABA AUTHOR: TOMOHARU UGAWA

Problem Description
Count "YOKOHAMA" hidden in the board

Y	O	H	A
O	K	A	M

Problem Description

Count "YOKOHAMA" hidden in the board

Problem Description

Count "YOKOHAMA" hidden in the board

Any enumeration will work

- depth-first search
- dynamic programming

Y	O	H	A
O	K	A	M

0

F: Color Inversion on a Huge Chessboard
 PROPOSER: KOHEI MORITA AUTHOR: KOHEI MORITA

Problem

- Given $N, Q(1 \leq N, Q \leq 500,000)$ (as usual)
- You have to process Q queries for $N \times N$ chessboard.
- Flip color of a row
- Flip color of a column
- Print \# of areas (= same color components) after each query

Key Point

- You can notice that each area forms rectangle.
- Let's try with a random case.

- Why: row-i color is same with row-1 or inversion of row-1

Solution

- Managing row-1 color \& column-1 color.
- And, (\# of connected component) of row-1 \& column-1.
- Print (\# of area of row-1) * (\# of area of column-1) after query
- You can process each query in $O(1)$ time, total time complexity is $O(N+Q)$

B: Rank Promotion

PROPOSER: KAZUHIRO INABA AUTHOR: KAZUHIRO INABA

$n \leqq 500000$
 $\mathrm{c} \leqq 200$

Problem

If a sufficiently long ($\geqq \mathrm{c}$) range contains Y 's in a sufficiently high ($\geqq \mathrm{p} / \mathrm{q}$) ratio, rank $+=1$. What's the final rank?

Sample Input: $c=4, p / q=4 / 7$

Solution: O(nc)

No need to think about too-long ($\geqq 2 \mathrm{c}$) ranges. Just check the Y-ratio of all the len $\leqq 2 \mathrm{c}-1$ substrings.

If a 2c sequence has a high Y-ratio,

$$
\text { ratio(Y) } \geqq p / q
$$

either the first or the latter half also has. ratio(Y) $\geqq p / q$
or

$$
\text { ratio }(Y) \geqq p / q
$$

Advanced Solution : O(n)

You can solve the problem even if the upperbound of c were large.

$$
\frac{\sum_{i=1}^{k} x_{i}}{k} \geq r \quad \text { Average is larger than } r
$$

$\sum_{i=1}^{k}\left(x_{i}-r\right) \geq 0$ Sum of $x_{i}-r$ is above 0.
Maintain the cumulative sum of (S[i]==' $\mathrm{Y}^{\prime} ? 1: 0$) $-\mathrm{p} / \mathrm{q}$ and the max after the last rank promotion. Then, in $\mathrm{O}(1)$ you can check if a "higher than p / q " range exists.

D: Nested Repetition Compression

PROPOSER: KENTO EMOTO AUTHOR: TAKASHI CHIKAYAMA

Compression Specifying Repetitions

- Up to nine repetitions of the same string can be specified
- ababab $\rightarrow 3$ (ab)
- abababaaaaa \rightarrow 3(ab)5(a)
- Repetitions can be arbitrarily nested
- aaaaaaaaaaaaa \rightarrow 3(4(a))
- As this compression scheme is context-free, compression of distinct substrings are independent

The Best Compression is Either:

- Repetition of optimally compressed segments,

- Two optimally compressed ones concatenated, or

- As is, i.e., no compression at all.

Preparation: Repetition Table

For all the segments beginning from all the positions in the original string, a table of repeated patterns and their lengths should be prepared.

The table can be made with complexity $O\left(n^{3}\right)$.

Bottom-up Construction

Build a table of the shortest representations for all the string segments, starting from the shortest ones and gradually expanding to longer ones.

- Any segments of length four or less should be as-is.
- Knowing the shortest reps for lengths n and less, the shortest for of length $n+1$ segments are either:
- Concatenation of the shortest reps of the first k characters and the remaining $n+1-k$ characters, for $k=1, \ldots, n$. This can be checked with complexity of $O(n)$, or
- Repetition of j identical segments of length $(n+1) / j$ for any factor j of $n+1$. Whether this is possible can be looked up in the repetition table.
The total complexity is $O\left(n^{3}\right)$.

K: Probing the Disk

PROPOSER: KIMINORI MATSUZAKI
AUTHOR: KIMINORI MATSUZAKI MITSURU KUSUMOTO

Problem

Given a disk (radius ≥ 100) in a square (side $=10^{5}$), decide the position and the size of the disk, by at most 1024 probes.

Each prove:

- Query: a line segment
- Answer: length on disk

Key to Solution

"Find a point that is surely in a disk"
If you find a point in a disk, you can solve the problem in 4 more probes.

A Simple Solution

1. Probe by vertical lines (1000 probes) and find a line with the largest common length
2. Do binary search (11 probes)
to find a point that is surely in the disk
3. Find the center and radius (4 probes)

E: Chayas

PROPOSER: SOU KUMABE AUTHOR: SHINYA SHIROSHITA

Overview

There were n chayas (teahouses) in a line.
You have m records showing the following information:
Record i : chaya b_{i} is between chaya a_{i} and c_{i}.

※ Reversing the order is OK How many orders were there satisfying all the records?

- $3 \leq n \leq 24$
- $1 \leq m \leq n(n-1)(n-2) / 2$

Example

$$
\begin{array}{lllll}
1 & 5 & 3 & 2 & 4
\end{array}
$$

Records

※ Reversing the order is OK

Analysis

Let's consider when we select chayas from left to right.
Let L_{i} be the subset of the i chayas from the left.
The condition " b is between a and c " can be formulated as follows:

- For all $1 \leq i \leq n-1$, NONE of the below must hold.
- $b \in L_{i}$ and none of a, c are not in L_{i}.
- $b \notin L_{i}$ and both of a, c are in L_{i}.

How to check these conditions quickly?

Analysis

For simplicity, we hereby consider the condition

$$
\begin{gathered}
b \in S \text { and none of } a, c \text { are not in } S \\
=S \text { where }\{b\} \subseteq S \subseteq \text { (all chayas) } \backslash\{a, c\}
\end{gathered}
$$

for each of the records.
When we create a 2^{n} boolean tables memorizing the conditions' true or false, the naïve check for each record takes $O\left(m \cdot 2^{n}\right)=O\left(n^{3} \cdot 2^{n}\right)$, which is too slow.
\rightarrow Let's focus on all the records whose b are the same.

Precomputation

When we define
$f(S)=\left\{\begin{array}{l}1 \text { if } S=(\text { all chayas }) \backslash\left\{a_{i}, c_{i}\right\} \text { for some }\left(a_{i}, b_{i}, c_{i}\right), \\ 0 \text { otherwise },\end{array}\right.$
Then, the subset S containing b contradicts the records if

$$
g(S):=\sum_{S \subseteq T} f(T) \geq 1
$$

where $g(S)$ is the sum of $f s$ of the supersets of S.
The calculation of $g(S)$ can be speed up based on Fast Zeta Transformation.

Precomputation

The following dp calculates $g(S)=\mathrm{dp}[n][S]$.

```
dp[0][S] = f(S) for each subset S.
for each chaya i = 1,\ldots,n:
    for each subset S of i\not\inS:
        dp[i][S]= dp[i-1][S]+dp[i-1][S\cup{i}]
    for each subset S of i E S:
        dp[i][S]= dp[i-1][S]
```


Precomputation

The transformation of the same b can be done in $O\left(n \cdot 2^{n}\right)$.
For other $b s$, we can calculate in the same transformation when we use different digits, totaling $O\left(n \cdot 2^{n}\right)$ time complexity.

We can solve the other condition in the similar way.

Solution

The solution is equal to the number of sequences where the left i chayas satisfies the records for all $0 \leq i \leq n$.

This can be solved by dynamic programming.
As the condition check of each subset takes $O(1)$ by the precomputation, the time complexity is $O\left(n \cdot 2^{n}\right)$.

G: Fortune Telling

PROPOSER: MITSURU KUSUMOTO AUTHOR: MITSURU KUSUMOTO

Problem Overview

- n cards are lined up ($2 \leq n \leq 300000$)
- Each time, we roll a die and when it shows x, we remove cards x-th, $(x+6)$-th, $(x+12)$-th, ... from left.
- We end this when only one card remains.
- Compute the probability each initial card survives.

Naive DP

$\mathrm{dp}\left[n^{\prime}\right][k]:=$ "Probability that, when there are n^{\prime} cards, card k-th from left survives"

Naive DP

$\mathrm{dp}\left[n^{\prime}\right][k]:=$ "Probability that, when there are n^{\prime} cards, card k-th from left survives"
$\Theta\left(n^{2}\right)$ entries!! Too many!!

Dependency dp[n][:]

Dependency
$\mathrm{dp}[n][:] \quad$ only depends on
dp[(5/6)n][:] dp[(5/6)n+1][:]

Dependency

$\mathrm{dp}[n][:] \quad$ only depends on

dp[(5/6)n][:] dp[(5/6)n+1][:]
only depend on
$\mathrm{dp}\left[(5 / 6)^{2} n\right][:]$ $\operatorname{dp}\left[(5 / 6)^{2} n+1\right][:]$
$\operatorname{dp}\left[(5 / 6)^{2} n+2\right][:]$

Dependency

 $\mathrm{dp}[n][:] \quad$ only depends on dp［（5／6）n］［：］ $\mathrm{dp}[(5 / 6) n+1][:]$only depend on

解त1D［（5／6）${ }^{2}$ nli：］
Required entries for DP calculation may be much smaller than \mathbf{n}^{2} ？

Bound

The number of required entries for DP computation is roughly bounded by

Bound

The number of required entries for DP computation is roughly bounded by

If you can access to Wolfram Alpha...

WolframAlpha

```
\sum_{k=1\mp@subsup{}}{}{\wedge}\\mathrm{ infty k(5/6)^{k-1}}
重 natural language \int\Sigma% math input 囲 Extended keyboard
```

> Infinite sum
> $\sum_{k=1}^{\infty} k\left(\frac{5}{6}\right)^{k-1}=36$

Yes, it's 36, small.

Another method

You can estimate it without Wolfram Alpha:
Approximate it by a tiny code

- Differentiate $1+x+x^{2}+\ldots+x^{n}=\left(1-x^{n+1}\right) /(1-x)$ and set $x=5 / 6$, then take $n \rightarrow \infty$.

$$
n \sum_{k=1}^{\infty} k\left(\frac{5}{6}\right)^{k-1}=36 n
$$

Solution

Compute a DP table with memorization.

In general, if the die has A faces, time complexity is $O\left(A^{3} n\right)$.

H: Task Assignment to Two Employees

PROPOSER: YOICHI IWATA AUTHOR: YOICHI IWATA

Problem

Assign tasks to two employees in an appropriate order to maximize the total profit.

- initial skill point: p_{0}
- task compatibility: $v_{i, j}$
- skill growth: $s_{i, j}$
- profit $=$ current skill point $\times v_{i, j}$
- new skill point $=$ current skill point $+s_{i, j}$

Optimize Ordering for Single Employee

profit $=$ total area
order $=[1,2,3,4]$

Optimize Ordering for Single Employee

Optimize Ordering for Single Employee

Optimal ordering $=\left[i_{1}, i_{2}, \ldots, i_{n}\right]$
s.t. $s_{i_{j+1}} v_{i_{j}} \leq s_{i_{j}} v_{i_{j+1}}$
\Rightarrow Sort \& Greedy

Key Observation

Optimal profit
$=\sum_{i} p_{0} v_{i}+\sum_{i, j} \max \left(s_{i} v_{j}, s_{j} v_{i}\right)$

Optimize Assignment
x_{i} : task i is assigned to employee 1
Profit $=$

$$
\begin{aligned}
& \sum_{i} p_{0} v_{1, i} x_{i}+\sum_{i, j} \max \left(s_{1, i} v_{1, j}, s_{1, j} v_{1, i}\right) x_{i} x_{j} \\
+ & \sum_{i} p_{0} v_{2, i} \bar{x}_{i}+\sum_{i, j} \max \left(s_{2, i} v_{2, j}, s_{2, j} v_{2, i}\right) \overline{x_{i}} \overline{x_{j}}
\end{aligned}
$$

maximization of Quadratic pseudo-Boolean supermodular function \rightarrow mincut !!!

I: Liquid Distribution

PROPOSER: RYOTARO SATO
AUTHOR: RYOTARO SATO

Problem Overview

Judge whether mixture process below is feasible.

Observation: Curves

Sort all liquids by b_{i} / a_{i} (or d_{j} / c_{j}) and plot cumulative sum.
Generated curves are always convex.

Observation: Mixture

What happens to curves when liquids are mixed?
\rightarrow Curves always move upper!

Solution

Mixture process is feasible if and only if final state curve NOT passes under initial state curve.

Feasible Case

Infeasible Case

$O(\mathrm{~nm})$ Implementation

For each segment $P Q$ of initial curve and each breakpoint R of final curve, check sign of $\overrightarrow{P Q} \times \overrightarrow{P R}$.

J: Do It Yourself?

PROPOSER: YUTARO YAMAGUCHI AUTHOR: YUTARO YAMAGUCHI

Story

Complete the tasks with the smallest total fatigue of employees.

Story

Complete the tasks with the smallest total fatigue of employees.

Story

Complete the tasks with the smallest total fatigue of employees.

Story

Complete the tasks with the smallest total fatigue of employees.

Story

Complete the tasks with the smallest total fatigue of employees.

Story

Complete the tasks with the smallest total fatigue of employees. $8+5+0+3+6+1=23$

Problem

Given a rooted tree of n vertices. ($2 \leq n \leq 5 \times 10^{5}$)
Given a fatigability constant f_{i} of each employee. $\left(1 \leq f_{i} \leq 10^{12}\right)$

$$
\text { minimize } \sum_{i=1}^{n} f_{i} x_{i}^{2}, \text { where } x_{i}=\#(\text { tasks done by } \# i)
$$

$$
\begin{aligned}
& 2 \leq n \leq 5 \times 10^{5} \\
& 1 \leq f_{i} \leq 10^{12} \\
& \mathrm{TL}: 10 \mathrm{sec}
\end{aligned}
$$

[AC1] Greedy Algorithm with Heavy-Light Decomposition

- Min-weight base of a laminar matroid (Minimization of M-convex function)
- $O\left(n \cdot(\log n)^{2}\right)$ time
[AC2] Greedy + DP with Weighted-Union Heuristic
- $\mathrm{dp}(v)=$ opt. solution of the subtree of v (maintained by priority queue)
- $\mathrm{O}(n \cdot \log n \cdot \log F)$ time $\left(F=\max _{i} f_{i}\right)$

[TLE] Naive DP on Tree

- $\mathrm{dp}(v, k)=o p t$. value of the subtree of v with k tasks completed
- $\Theta\left(n^{2}\right)$ time

Key Observations

$$
\text { minimize } \sum_{i=1}^{n} f_{i} x_{i}^{2}, \text { where } x_{i}=\#(\text { tasks done by } \# i)
$$

- $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is feasible $\Leftrightarrow \sum_{j \in T_{i}} x_{j} \leq\left|T_{i}\right|(\forall i)$, where T_{i} is the subtree of i.
- $f_{i} x_{i}^{2}=\sum_{k=1}^{x_{i}}(2 k-1) f_{i}$
\rightarrow the k-th task takes cost $(2 k-1) f_{i}$

Key Observations

$$
\operatorname{minimize} \sum_{i=1}^{n} f_{i} x_{i}^{2}, \text { where } x_{i}=\#(\text { tasks done by } \# i)
$$

- $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is feasible $\Leftrightarrow \sum_{j \in T_{i}} x_{j} \leq\left|T_{i}\right|(\forall i)$, where T_{i} is the subtree of i.
- $f_{i} x_{i}^{2}=\sum_{k=1}^{x_{i}}(2 k-1) f_{i}$
\rightarrow the k-th task takes cost $(2 k-1) f_{i}$

$\begin{array}{cccc}f_{i} \\ \square \\ \square & \square f_{i} & 5 f_{i} \\ \square & \ldots\end{array}$

Reformulation

$$
\operatorname{minimize} \sum_{i=1}^{n} f_{i} x_{i}^{2}, \text { where } x_{i}=\#(\text { tasks done by } \# i)
$$

- Each employee $\# i$ has n items with cost $f_{i}, 3 f_{i}, \ldots,(2 n-1) f_{i}$.
- Minimize the total cost by selecting exactly n items in total subject to at most $\left|T_{i}\right|$ items are selected in each subtree T_{i}.

Minimum Weight Base of a Laminar Matroid
\rightarrow Greedy is Optimal

Greedy Algorithm

\square next candidate in priority queue

Greedy Algorithm

\square next candidate in priority queue

Greedy Algorithm

Greedy Algorithm

\square next candidate in priority queue
\square selected

Greedy with HL Decomposition

- An item can be selected
\Leftrightarrow The subtree of every boss $\# i$ has positive capacity, i.e., $\operatorname{cap}(i):=\left|T_{i}\right|-\#\left(\right.$ items selected in $\left.T_{i}\right)>0$
- An item is selected \rightarrow Decrease $\operatorname{cap}(i)$ by 1 for every boss $\# i$
- An item is not selected \rightarrow The same person will never work

Range Minimum + Range Add $2 n$ times
$O\left(n \cdot(\log n)^{2}\right)$ time with Heavy-Light Decomposition

$$
\begin{aligned}
& 2 \leq n \leq 5 \times 10^{5} \\
& 1 \leq f_{i} \leq 10^{12} \\
& \mathrm{TL}: 10 \mathrm{sec}
\end{aligned}
$$

[AC1] Greedy Algorithm with Heavy-Light Decomposition
[AC2] Greedy + DP with Weighted-Union Heuristic

- $\mathrm{dp}(v)=o p t$. solution of the subtree of v (maintained by priority queue)
- $\mathrm{O}(n \cdot \log n \cdot \log F)$ time $\left(F=\max _{i} f_{i}\right)$
- Merge is completed in $O(n \cdot \log n)$ time (meldable heap) in total; $0\left(n \cdot(\log n)^{2}\right)$ time (usual heap) is also enough.
- \#(insertion) $=0(n \cdot \log F)$ is proved by considering a potential function

$$
\Phi(v):=\sum_{x \in \operatorname{dp}(v)} \log x .
$$

[TLE] Naive DP on Tree

C: Ferris Wheel

PROPOSER: SOH KUMABE
AUTHOR: SOH KUMABE

Problem Description

Given $2 n$ points on circle,

Problem Description

Given $2 n$ points on circle,
Count the number of ways to color them by k colors so that

Problem Description

Given $2 n$ points on circle,
Count the number of ways to color them by k colors so that

There is a non-crossing perfect matching of points Such that matched points have the same color

Problem Description

Given $2 n$ points on circle,
Count the number of ways to color them by \boldsymbol{k} colors so that

There is a non-crossing perfect matching of points Such that matched points have the same color Up to rotation

Matching to Parenthesis

$$
\}_{0}^{0}>((1))()
$$

Matching to Parenthesis

There is a non-crossing perfect matching of points

Such that matched points have the same color

Parenthesis is balanced

If not "up to rotation"

Let x_{i} be the number of balanced parenthesis that have i places with height 0

012321010 $\left.\left(()^{2}\right)\right)()$

Answer is $\sum_{i=1}^{n} x_{i} k^{i}(k-1)^{n-i}$

If not "up to rotation"

Let x_{i} be the number of balanced parenthesis that have i places with height 0

Can be computed like Catalan numbers

Time Complexity: $\boldsymbol{O}(\boldsymbol{n})$

"Up to rotation"

Use Pólya's enumeration theorem
Count the colorings of period p

"Up to rotation"

There is a non-crossing perfect matching of points
Such that matched points
Remaining
' ('s are palindrome have the same color

"Up to rotation"

If p is even, no remaining '(` same as before

If p is odd, remaining `(`s are palindrome

"Up to rotation"

If p is odd, remaining '('s are palindrome
Let x_{i} be the number of parenthesis that have i places with height 0 and some number of '(`s remain

Answer is $\sum_{i=1}^{\frac{p+1}{2}} x_{i} k^{i}(k-1)^{\frac{p+1}{2} i}$

"Up to rotation"

Let x_{i} be the number of parenthesis that have i places with height 0 and some number of '(`s remain

Can be sequentially computed as "diagonal sum" of Catalan number

Time Complexity:
O (sum of divisors of $2 n$)
$=O(n \log n)$

