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(CHIEF: YUTARO YAMAGUCHI)



ALL teams get ACs for Problems A and B!! Congratulations!!

Easy DifficultJudges’ Estimation



ALL teams get at least 3 ACs!!! Congratulations!!!



A: Ribbon on the 
Christmas Present 

PROPOSER: KAZUHIRO INABA
AUTHOR: TOMOHARU UGAWA



Problem
Dye white ribbon and make the “planned pattern.”
◦ Contiguous segments can be dyed in a single step

◦ A darker color masks lighter color

Compute the minimum possible number of dyeing steps 

…
init

plan



Dyeing Process Diagram (DPD)
Consider the dyeing process using a layered diagram, DPD
◦ Dye a chunk of contiguous sections at once

◦ Dye from lighter to darker colors

Find an optimal DPD
◦ DPD with the fewest chunks of continuous sections

created pattern

DPD (not optimal)



Key Observation
Any DPD will give the planned pattern if the surface is 
correct for each section.

Our Problem:
Fill some of the hidden chunks and make an optimal DPD

?
?

hidden chunks



Approach
Fill the hidden chunk between surface chunks and merge 
them into a single chunk.

fill this gap

surface chunk



Cases
⚫hidden chunk between chunks => must be filled

⚫half-open hidden chunk => arbitrary

⚫double-open hidden chunk => must not be filled

left-open right-open

Typical submitted wrong 
answers filled this case



One of the Solutions
Fill hidden chunks that follow to surface chunks.

gap => fill right-open => fill left-open => not fill



Resulting DPD



Algorithm
For each color, scan the planned pattern from left to right.

Start making a merged chunk when the color appear.

Stop merging when a lighter color appear or at the end of 
the ribbon.

plan



Scan from left to right once while managing a stack of the 
colors of “merging layers”
◦ stack top = next color: proceed to right

◦ stack top < next color: push next color, count++

◦ stack top > next color: pop

O(n) Algorithm

plan



Scan from left to right once while managing a stack of the 
colors of “merging layers”
◦ stack top = next color: proceed to right

◦ stack top < next color: push next color, count++

◦ stack top > next color: pop

O(n) Algorithm

plan



B: The Sparsest 
Number in Between

PROPOSER: ETSUYA SHIBAYAMA
AUTHOR: ETSUYA SHIBAYAMA



Problem Descriptions
Input: two positive integers 𝑎 and 𝑏 
(𝑎 ≤ 𝑏)

Challenge: find the sparsest integer 
between 𝑎 and 𝑏, inclusive

Definition: 𝑥 is sparser than 𝑦 if and only if the 
binary representation of 𝑥 has a smaller 
number of 1’s than that of 𝑦

Smallest



Example

When 10 and 15 are given

Decimal Binary # of 1’s

10 1010 2

11 1011 3

12 1100 2

13 1101 3

14 1110 3

15 1111 4

The Answer

The Integers 
in Between Sparsest



Solution
Since 𝑎 and 𝑏 can be large (up to 1018), a naïve 
search like the following does not work

Proper division of cases, like a mathematical 
proof, can help you

for (long long i = a; i <= b; i++) {
  // do some work
}



Division of Cases
Case 1: 𝒂 is a power of two (𝟐𝒏)

The answer is 𝒂 itself 

𝑎’s binary rep. has just a single 1, and thus sparsest and 
smallest

[Hereafter, we assume that 𝑎 is not a power of two]

Decimal Binary

a 8 1000

answer 8 1000

b 19 10011



Division of Cases
Case 2a: the binary rep. of 𝒂 is shorter than that of 𝒃

The answer is the smallest power of two greater than 𝒂 

Suppose for instance that 14 and 33 are given

Obviously, 14 ≤ 16(= 24) ≤ 33, and 16 is the smallest 
among the sparsest

Decimal Binary

a 14 1110

answer 16 10000

b 33 100001



Division of Cases
Case 2b: the binary reps. of 𝒂 and 𝒃 are of the same length

The binary rep. of the answer must share the same 
common prefix as 𝒂’s and 𝒃’s

The rest of the binary rep. of the answer can be found in a 
similar manner as case 1 or 2a

Unless 𝑎 = 𝑏, the rest parts of the 𝑎’s and 𝑏’s binary reps. 
always start with 0 and 1, respectively.

Decimal Binary

Common prefix Suffix

a 43 101 011

answer 44 101 100

b 47 101 111



How to deal with binary reps.
You may use bit operations

You may also first convert numbers to strings and then use 
string operations



C: Omnes Viae 
Yokohamam Ducunt?

PROPOSER: MASATOSHI KITAGAWA
AUTHOR: MASATOSHI KITAGAWA



Problem
Given a weighted undirected graph 𝐺 = 𝑉, 𝐸 .
◦  𝑝𝑣: weight of a vertex 𝑣 (significance value)

◦  𝑞𝑒: weight of an edge 𝑒 (vulnerability)

◦  𝑠 ∈ 𝐺: Yokohama

Minimize the cost (total risk severity) of spanning trees of 𝐺.



Problem(Cost)
For a spanning tree 𝑇 = 𝑉, 𝐸𝑇 of 𝐺,

cost of 𝑇 ≔ ෍

𝑒∈𝐸𝑇

𝑞𝑒 ෍

𝑣

𝑝𝑣 .

The second sum is taken over all 𝑣 ∈ 𝑉 inaccessible from 𝑠 in 𝑇 −
𝑒 .



Problem(Cost)
For a spanning tree 𝑇 = 𝑉, 𝐸𝑇 of 𝐺,

cost of 𝑇 ≔ ෍

𝑒∈𝐸𝑇

𝑞𝑒 ෍

𝑣

𝑝𝑣 .

The second sum is taken over all 𝑣 ∈ 𝑉 inaccessible from 𝑠 in 𝑇 −
𝑒 .

Minimum spanning tree problem?



Problem(Cost)
For a spanning tree 𝑇 = 𝑉, 𝐸𝑇 of 𝐺,

cost of 𝑇 ≔ ෍

𝑒∈𝐸𝑇

𝑞𝑒 ෍

𝑣

𝑝𝑣 .

The second sum is taken over all 𝑣 ∈ 𝑉 inaccessible from 𝑠 in 𝑇 −
𝑒 .

Minimum spanning tree problem?

No!

The cost of 𝑒 depends on 𝑇.



Rewrite Cost

cost of 𝑇 ≔ ෍

𝑒∈𝐸𝑇

𝑞𝑒 ෍

𝑣

𝑝𝑣 .

Swapping the two sums,

cost of 𝑇 = ෍

𝑣∈𝑉

𝑝𝑣 ෍

𝑒

𝑞𝑒 .

The second sum is taken over all 𝑒 in the 𝑠−𝑣 path in 𝑇.



Rewrite Cost

cost of 𝑇 ≔ ෍

𝑒∈𝐸𝑇

𝑞𝑒 ෍

𝑣

𝑝𝑣 .

Swapping the two sums,

cost of 𝑇 = ෍

𝑣∈𝑉

𝑝𝑣 ෍

𝑒

𝑞𝑒 .

The second sum is taken over all 𝑒 in the 𝑠−𝑣 path in 𝑇.

cost of 𝑇 = ෍

𝑣∈𝑉

𝑝𝑣 distance from 𝑠 to 𝑣 in 𝑇 .



Solution

cost of 𝑇 = ෍

𝑣∈𝑉

𝑝𝑣 distance from 𝑠 to 𝑣 in 𝑇

This cost is minimized when 𝑇 is a shortest-path tree rooted 
at 𝑠.



Solution

cost of 𝑇 = ෍

𝑣∈𝑉

𝑝𝑣 distance from 𝑠 to 𝑣 in 𝑇

This cost is minimized when 𝑇 is a shortest-path tree rooted 
at 𝑠.

Dijkstra’s algorithm!



D: Tree Generators
PROPOSER: MITSURU KUSUMOTO

AUTHOR: MITSURU KUSUMOTO



Parsing!!



Syntax is

E ::= 1 | (E E)



‘1’ = Single vertex

1

It’s a tree



‘(E1 E2)’ = Add one edge randomly 
      between two trees  
      generated by E1 & E2

1

2

3

4
1

2

3

Generated from E1 Generated from E2 
(labels are increased)

5

6

7?



Input: Two expressions

Output: # of trees generated from them 
in common modulo 998244353

Solve in linear time.



Trees generated
So, what kind of trees can be generated?

Assume that generated trees contains n vertices.

After parsing an expression, you can obtain triples (ai, bi, ci) 
(i=1,...,n-1) such that

Each edge is randomly chosen from [ai, bi] x [bi+1, ci]



Example (Sample 3)

E=(((11)(11))((11)1))

1 2 3 4 5 6 7

((11)1)

(11)

((11)(11))

(11)(11)

1111111



Example (Sample 3)

E=(((11)(11))((11)1))

1 2 3 4 5 6 7

((11)1)

(11)

((11)(11))

(11)(11)

1111111

(1,4,7)

(5,6,7)

(5,5,6)

(1,2,4)

(3,3,4)(1,1,2)

Black node = single edge addition step
Triples are shown below the node



Example (Sample 3)

E=(((11)(11))((11)1))

1 2 3 4 5 6 7

((11)1)

(11)

((11)(11))

(11)(11)

1111111

(1,4,7)

(5,6,7)

(5,5,6)

(1,2,4)

(3,3,4)(1,1,2)

Black node = single edge addition step
Triples are shown below the node

This represents adding edges from
• [1,4]x[5,7]
• [1,2]x[3,4]
• (1,2)
• (3,4)
• (5,6)
• [5,6]x{7}



Trees generated (2)
So, what kind of trees can be generated?

Assume that generated trees contains n vertices.

After parsing an expression, you can obtain triples (ai, bi, ci) 
(i=1,...,n-1) such that

Each edge is randomly chosen from [ai, bi] x [bi+1, ci]

Values bi appears just once in the triples; Let’s simplify this:

Each edge is randomly chosen from [ai, i] x [i+1, ci]

This is like, the gap between i and i+1 is generating an edge.



Example revised
E=(((11)(11))((11)1))

1 2 3 4 5 6 7

4

2

31 5

6

((11)1)

(11)

((11)(11))

(11)(11)

1111111

(1,7)

(5,7)

(5,6)

(1,4)

(3,4)(1,2)

Black node = single edge addition step
(ai, ci) is shown below



Solution
Suppose that pairs (a’i, c’i) are obtained from the other 
expression.

Then, the solution is

ෑ

𝑖=1

𝑛−1

𝑖 − max 𝑎𝑖 , 𝑎′𝑖 + 1 × min 𝑐𝑖 , 𝑐𝑖
′ − 𝑖 .

The remaining part is the proof for this.



Correspondence (1)
Suppose that a tree is generated from E.
For each edge, can we identify which gap generated it?

Answer: We can uniquely identify.

Why? Traversing the generation steps in the parsed tree 
from top to bottom will give one-to-one correspondence 
between edges and generations.



Example revised (2)
E=(((11)(11))((11)1))

1 2 3 4 5 6 7

4

2

31 5

6

((11)1)

(11)

((11)(11))

(11)(11)

1111111

(1,7)

(5,7)

(5,6)

(1,4)

(3,4)(1,2)

Black node = single edge addition step
(ai, ci) is shown below

There can be only one 
edge between [1,4]x[5,7].
In this example, it’s (3,5).
After removing (3,5), we 
can recursively do this 
identification process.

Generated 
tree → 



Correspondence (2)
Now, suppose that a tree is generated from both E1 and E2.

For an edge (j, k), if

(j, k) is generated from the gap between i and i+1 in E1, and
(j, k) is generated from the gap between i’ and i’+1 in E2,

then, we denote as π(i) = i’.

The mapping π is bijective. We can show that π must be an 
identity function. This justifies the solution mentioned.



Proof by infinite decent
Suppose that π is not an identity. This means there exists a 
pair i≠j s.t. j=π(i).

From some observation, ai ≤ j < ci.

For k=1,...,n-1, let f(k) = ck - ak. 

Then, f(i) = ci - ai > f(j) holds. If we continue this, we have

However, since π is bijective, this deduction eventually 
results in f(i) > f(i). This is contradiction. Thus, π is identity.

f(i) > f(j) > f(j’) > f(j’) > ...  for j’=π(j), j’’=π(j’), ...



E: E-Circuit Is
Now on Sale!

PROPOSER: SHINYA SHIROSHITA
AUTHOR: SHINYA SHIROSHITA



Problem
You are given a tree of a mathematical formula embedded 
in a grid space.

Your task is to calculate the result of the formula.

P (root)

5

3 4

-

*

5 . P . .

# # - # .

. . . * 4

. 3 # # .

1 ≤ 𝑛, 𝑚 ≤ 50.

𝑚

𝑛



Node types
Following nodes are provided.

P (root)

5

3 4

-

*
12

7

→ print “7”

• Printer (P) : the root node.

• Digit (0-9) : a leaf node with a value.

• Operator (+-*/) : a node applying an 
arithmetic operation.

(“#” forms edges connecting nodes.)

𝐴 𝐵

+

𝐴 𝐵

-

𝐴 𝐵

*

𝐴 𝐵

/

𝐴 + 𝐵 𝐴 − 𝐵 𝐴 × 𝐵

max{𝐴, 𝐵}

min{𝐴, 𝐵}



Solution
Traverse the tree from the printer recursively.

•For an operator cell,
• Traverse a subtree of one connection and memorize the result.

• Traverse the other connection and apply the operator’s calculation.

Be careful about careless mistakes!

    Overflow, out of range, infinite loop, …

It is wasteful to get penalties by 
careless mistakes. 

20 min

20 min

20 min

20 mi



F: The Farthest Point
PROPOSER: F.YAMAGUCHI

AUTHOR: F.YAMAGUCHI



Problem
Given: the size (edge lengths) of a rectangular cuboid 

Write a program which computes the distance from a vertex 
to its farthest point on the surface of the cuboid.

the starting vertex

the opposite vertex
the farthest point



Core Idea

Any path from the farthest point to the 
starting vertex has the same distance.

the starting vertex

an alias of   
the starting vertex

an alias of 
the starting 
vertex

The farthest point is the circumcenter of the 
triangle consists of the starting vertex and 
its two aliases on a net. 

the opposite 
vertex

Calculate the length of the longest path to 
the candidate among sufficient net settings. 



For a candidate of the farthest point, 
the segment between the starting 
vertex and the candidate point should 
not cross any edge of the net. 

Note that...

Distance is the length of 
the shortest path among all 
possible paths. 

The distance from the 
starting point is not a 
convex function.



G: Beyond the 
Former Exploer

PROPOSER: KOHEI MORITA
AUTHOR: KOHEI MORITA

+ MITSURU KUSUMOTO



→ → ↓

↑ ↓

↑ ↓

↑ ↓ ←

↑ ← ← ←

Only
３００００ 

Query



→ → ↓

↑ ↓

↑ ↓

↑ ↓ ←

↑ ← ← ←

Original idea



Solution

Interactive Problem



Solution

Interactive Problem

As usual:
Binary Search



← ←

↓→
→

←←

S
→

Compare (left →) vs (right ←)

Left region has G(goal)



← ←

↓→
→

←←

S
→

Compare (left →) vs (right ←)

Left region has G(goal)

𝑂(𝑁 log 𝑁)



AC …. ?

𝑂(𝑁 log 𝑁) =

4𝑁 = 8000 log 𝑁 = 11x =

88000 queries



AC …. ?

𝑂(𝑁 log 𝑁) =

4𝑁 = 8000 log 𝑁 = 11x =

88000 queries
Only

３００００ 
Query



4𝑁 = 8000

AC …. ?

𝑂(𝑁 log 𝑁) =

log 𝑁 = 11x =

88000 queries
Only

３００００ 
Query

𝑂(𝑁 log 𝑁) is 
insufficient



Vertical
→ Horizontal
→ Vertical
→ Horizontal
:



Vertical
→ Horizontal
→ Vertical
→ Horizontal
:

𝑂 𝑁  query



Full editorial(1/3)
The core idea is that for a continuous region with a grid, it is possible to 
determine whether the goal (G) is included in the region without 
examining every cell. To know this, it is sufficient to count the number 
of times the path "enters" and "exits" the region. This can be done by 
knowing only the boundary parts, that is, the cells in the region that 
touch the outside and the cells outside that touch the region.

Based on this consideration, for example, by examining all the cells in 
the 𝑖-th and 𝑖 + 1-th columns, it is possible to determine whether the 
goal is on the left or right.

Therefore, by performing a binary search on the range of columns 
where the goal might exist, it is possible to identify the goal with 
𝑂(𝑁 log 𝑁) queries. However, since it is necessary to examine 4𝑁 cells 
in one step of the search, this approach is hard to get accept in terms of 
the number of queries.



Full editorial(2/3)
A further improvement is to reduce the number of queries by searching in the order of (split the 
region vertical)  → horizontal → vertical → horizontal → ... like a KD-tree. The logic is as follows:

- First, examine the central 2 columns (4𝑁 cells) to determine whether the goal is on the left or 
right.

- Examine the central 2 rows (2𝑁 cells) to determine whether the goal is up or down. This will 
make the region where the goal might exist a square of 𝑁 × 𝑁 (the size will vary by ±1 
depending on which of the four sides is chosen).

- Examine the central 2 columns (2𝑁 cells) to determine whether the goal is on the left or right.

- Examine the central 2 rows (𝑁 cells) to determine whether the goal is up or down.

- ... and repeat this search.

Since the number of cells required for the search is halved every 2 steps, the order of the 
number of queries for the entire search improves to O(𝑁). Specifically, estimating the constants, 
the number of cells required for the search is 4𝑁 + 2𝑁 + 2𝑁 + 𝑁 + 𝑁 + ⋯ = 12𝑁 cells, so 
there is enough margin against the query limit of 30000.



Full editorial(3/3)
The next consideration is how to move. In fact, there is a solution that requires only O(1) extra moves per step, 
that is, a total of 12𝑁 + 𝑂(log 𝑁) queries (Bonus), but it is assumed to be complicated to implement.

Since there is a margin of about 3N queries, it is desired to simplify the implementation as appropriate.

Various approaches can be considered, but one example is to assume that "the starting point of each step is at 
the center of the region." In other words,

- First, examine the central 2 columns (4N cells) to determine whether the goal is on the left or right.
    - Move to the center of the new region with N/2 queries.

- Examine the central 2 rows (2N cells) to determine whether the goal is up or down.
    - Move to the center of the new region with N/2 queries.

- Examine the central 2 columns (2N cells) to determine whether the goal is on the left or right.
    - Move to the center of the new region with N/4 queries.

- Examine the central 2 rows (N cells) to determine whether the goal is up or down.
    - Move to the center of the new region with N/4 queries.

- ... and repeat this search.

With this approach, the extra moves increase by about 2N cells, but this is within the acceptable range.



H: Remodeling the 
Dungeon 2

PROPOSER: YUTARO YAMAGUCHI
AUTHOR: RYOTARO SATO



Problem Statement
Given connected graph on ℎ ×  𝑤 2D grid (ℎ, 𝑤 ≤ 400),
find subset of edges (or report it is impossible) such that:

• All vertices and selected edges form a tree.

• Distances between all pair of leaves are even.

Distance = 8 (Even)

Input Output



Grid Graph Is Bipartite
Let input graph 𝐺 be represented as 𝑈, 𝑉, 𝐸 .

For simplicity, assume 𝑈 ≤ 𝑉 .

1 2 3

4 5 6

7 8 9

2

4

6

8

3

1

5

7

9

𝑈 = 2, 4, 6, 8
𝑉 = 3, 1, 5, 7, 9
𝐸 = all edges



Rephrased Constraint
Distances between all pairs of leaves are even.

⇔ Either 𝑈 or 𝑉 does not contain any leaves.

2

4

6

8

3

1

5

7

9

𝑈                𝑉

2

4

6

8

3

1

5

7

9

𝑈 has no leaves



Cases of 𝑈 = 𝑉
When 𝑈 = 𝑉 , always infeasible!

∵) Suppose 𝐺 = 𝑈, 𝑉, 𝐸  has no leaves in 𝑈 and satisfies 
𝑈 = 𝑉 . Clearly, 𝐸 ≥ 2 𝑈 = 𝑈 + 𝑉 , which implies 𝐺′ 

contains cycle(s).  ■

Hereafter, we assume 𝑈 < 𝑉  and 𝑈 has no leaves.



Updated Problem Statement
Given 𝐺 = 𝑈, 𝑉, 𝐸 𝑈 < 𝑉 , find 𝐸′ ⊂ 𝐸 such that:

• Each vertex in 𝑈 has two (or more) adjacent edges in 𝐸′

• 𝑈, 𝑉, 𝐸′  is a tree graph

 Then, how to assign two edges for each vertex in 𝑈 without 
making any cycles?

Note: This is typical matroid intersection problem, but naive 
implementations of general MI instances are too slow for 
prepared testcases!



Step 1. Maximum Matching
First, find maximum matching of 𝑈, 𝑉, 𝐸 .

Can be done by Hopcroft–Karp algorithm, 𝑂 𝐸 1.5 .

If size of matching < 𝑈 , infeasible!

2

4

6

8

3

1

5

7

9

𝑈 𝑉



Step 2. DFS
Run DFS on the directed graph, from all vertices in 𝑉 NOT 
used in matching. Edges’ directions:
• NOT used in matching: 𝑉-to-𝑈

• USED in matching: 𝑈-to-𝑉

2

4

6

8

3

1

5

7

9

𝑈 𝑉

2

4

6

8

3

1

5

7

9

2

4

6

8

3

1

5

7

9

Convert to
Directed Graph

DFS

Each vertex has
two (in & out) edges

Start



Infeasible Cases
 If some vertices are unreachable by DFS, infeasible!

∵) 𝑈′ ⊂ 𝑈 : set of all unreachable vertices.
𝑉′ ⊂ 𝑉 : set of all vertices adjacent to any vertex in 𝑈′.
We can prove 𝑉′ ≤ 𝑈′  (Exercise), which means it is 
impossible to choose 2 𝑈′  edges adjacent to 𝑈′ without 
making any cycle. ■

2

4

6

1

3

5

7

1 2 3

4 5 6

7

2

4

6

1

3

5

7
Unreachable𝑈                 𝑉

𝑈′

𝑉′



Step 3. Make Graph Connected
We obtained the DFS forest that satisfies degree constraints.

Finally, do not forget to adopt additional edges to make 
graph connected!

Overall complexity: 𝑂 ℎ𝑤 1.5  (bounded by finding max 

matching).



I: Greatest of the 
Greatest Common 
Divisors

PROPOSER: TOMOHIRO OKA
AUTHOR: TOMOHIRO OKA



Problem
Given positive integer sequence and intervals.

Choose a pair of 2 indices from the interval (L, R), consider 
the GCD of the values.

Output the greatest of the GCD among all pairs from the 
interval.

6 2 14 4 3 2 5 1 7

gcd(14, 7) = 7gcd(6, 4) = 2



Solution
• Common divisor
▪ ⇨ A value appears twice in the interval as a divisor.

• Read sequence from left to right

• Manage the rightmost and second rightmost indices

6 2 14 4 3 2 5 1 -

d 1 2 3 4 5 6 7 ...

f(d) 8 6 5 4 7 -1 3

s(d) 7 4 1 -1 -1 -1 -1



Solution
• Common divisor
▪ ⇨ A value appears twice in the interval as a divisor.

• Read sequence from left

• Manage the rightmost and second rightmost indices

6 2 14 4 3 2 5 1 7

d 1 2 3 4 5 6 7 ...

f(d) 9 6 5 4 7 -1 9

s(d) 8 4 1 -1 -1 -1 3

Update d=1, 7



Solution
• When i-th element is updated, solve all queries that have R=i
▪ f(d)≦ R is satisfied for all d 

• If L ≦ s(d) is satisfied, then d is a common divisor in the interval
▪ Find argmaxd { L ≦ s(d) }

6 2 14 4 3 2 5 1 7

d 1 2 3 4 5 6 7 ...

f(d) 9 6 5 4 7 -1 9

s(d) 8 4 1 -1 -1 -1 3



Solution
• Build a segment tree (range maximum query) for s(d)

• Binary search on segment tree

6 2 14 4 3 2 5 1 7

d 1 2 3 4 5 6 7 ...

s(d) 8 4 1 -1 -1 -1 3

8

8 3

8 -1 3 3

Binary search when L=3  ⇨  answer d=7

...



Summary
•Group intervals by R

•Read the sequence from left to right

•Update second rightmost indices of divisors, and the 
segment tree

•Binary search with the condition { L ≦ s(d) } on the tree

•Maximum d is the greatest GCD



J: Mixing Solutions
PROPOSER: NAOKI MARUMO

AUTHOR: NAOKI MARUMO
+ KOHEI MORITA



Problem 

𝑙, 𝑟 : concentration range of the mixed solution

Mix parts of 𝑛 solutions to make a new solution

Given:

• amount

• range of concentration 

• amount

• target concentration 𝑐

Minimize:   Max. Error max
𝑥∈ 𝑙,𝑟

𝑥 − 𝑐

of each prepared solution

of the mixed solution



Reformulate Problem

of each prepared solution

of the mixed solution

𝑙, 𝑟 : concentration range of the mixed solution

Mix parts of 𝑛 solutions to make a new solution

Given:

• amount

• range of concentration 

• amount

• target concentration 𝑐

Minimize:   Max. Error max
𝑥∈ 𝑙,𝑟

𝑥 − 𝑐 = max 𝑐 − 𝑙, 𝑟 − 𝑐



Reformulate Problem 

We want to solve

but what range does 𝑙, 𝑟 ∈ ℝ2 move over? 

𝑙, 𝑟 : concentration range of the mixed solution

min
𝑙, 𝑟

max 𝑐 − 𝑙, 𝑟 − 𝑐



Reformulate Problem 

We want to solve

but what range does 𝑙, 𝑟 ∈ ℝ2 move over? 

The set of possible 𝑙, 𝑟 ∈ ℝ2 is a convex polygon! 

➢ Note: A convex combination of two valid mixings is also valid

𝑙, 𝑟 : concentration range of the mixed solution

min
𝑙, 𝑟

max 𝑐 − 𝑙, 𝑟 − 𝑐



Reformulate Problem 

We want to solve

• 𝑥, 𝑦 ≔ 𝑐 − 𝑙, 𝑟 − 𝑐

• 𝑥, 𝑦  also moves over a convex polygon, 𝑃

𝑙, 𝑟 : concentration range of the mixed solution

min
𝑙, 𝑟

max 𝑐 − 𝑙, 𝑟 − 𝑐 = min
𝑥,𝑦 ∈𝑃

max 𝑥, 𝑦



Three cases

𝑥

𝑦

𝑃
𝑦 = 𝑥

𝑥

𝑦

𝑃

𝑦 = 𝑥

𝑥

𝑦

𝑃

𝑦 = 𝑥

Most interesting case

min
𝑥,𝑦 ∈𝑃

max 𝑥, 𝑦



Outline of solution

• The red point can be easily obtained from two adjacent 
green vertices

• Compute the green vertices by binary search

min
𝑥,𝑦 ∈𝑃

max 𝑥, 𝑦

optimal 𝑥, 𝑦
𝑥

𝑦

𝑃

𝑦 = 𝑥



• Each vertex is the point minimizing
the inner product with a vector

• Given a vector, the vertex that
minimizes the inner product can be
computed greedily in O 𝑛 log 𝑛  time

• Green vertices can be computed by binary searching 
the vectors

Compute green vertices

𝑥

𝑦

𝑃

𝑦 = 𝑥



Details

For the binary search, we can

• precompute Θ 𝑛2  candidate vectors and sort them

→ O 𝑛2 log 𝑛  solution

• use 
1

𝐵
,

𝐵−1

𝐵
,

2

𝐵
,

𝐵−2

𝐵
, … ,

𝐵−1

𝐵
,

1

𝐵
  with  𝐵 = Θ 𝑀2

→ O 𝑛 log 𝑛 log 𝑀  solution

Problem J can also be solved using the minimax theorem
or LP duality, without relying on geometric insights



K: Scheduling Two 
Meetings

PROPOSER: KAZUHIRO INABA
AUTHOR: KAZUHIRO INABA



Problem

Given many M-bits 
words, find a pair 
(a,b) such that

   a|b = 11…11
  a&b has the most 1s

1 01

110

1 10

0 10

M ≦ 20

N
 ≦ 
2*105



Solution

For each word, find the best buddy!
Naïve Θ(N2) loop will hit TLE, though…

1 01

110

1 10

0 10

0 10 1 10 1101 01

0

1 1

1 1

1 1

0



0 11

0 00

0 10 0 01 1 00

0 11 1 10 1 01

1 11

The best buddy => word with the most 1s among 
supersets of the complement!



Solution 

0 00

0 10 0 01 1 00

0 11 1 10 1 01

1 11

The diagram can be preprocessed in O(M・2M) time 
dynamic programming. O(N + M・2M) time in total.

dp[bitpat] :=
  the best word in input 
  among supersets of bitpat

dp[bitpat]
  = max(dp[bitpat|1<<i], …)
        for i in 0 .. M-1



The corner case, that many 
teams were trapped

1 11

0 00

0 10 0 01 1 00

0 11 1 10 1 01

1 11



L: Peculiar Protocol
PROPOSER: KAZUHIRO INABA

AUTHOR: SOH KUMABE



Problem
Given an array 𝑎1, … 𝑎𝑛 (𝑛 ≤ 500) and integers 𝑑, 𝑟

We can repeat following:
◦ Take interval [𝑝, 𝑞] with 𝑎𝑝 + ⋯ + 𝑎𝑞 = 𝑘𝑑 + 𝑟 for some integer 𝑘

◦ Remove these elements and squeeze the sequence

Maximize the total of 𝑘’s



Subproblem
Given an array 𝑎1, … 𝑎𝑛 (𝑛 ≤ 500) and integers 𝑑, 𝑟

We can repeat following:
◦ Take interval [𝑝, 𝑞] with 𝑎𝑝 + ⋯ + 𝑎𝑞 = 𝑘𝑑 + 𝑟 for some integer 𝑘

◦ Remove these elements and squeeze the sequence

First, consider the following variant:

Maximize the total of 𝑘’s, 
assuming we remove all elements



Subproblem
First, consider the following variant:

Maximize the total of 𝑘’s, 
assuming we remove all elements

If this variant on all intervals 𝑎𝑝, … , 𝑎𝑞 are solved,
remaining task is the following 𝑂 𝑛3 -time DP on intervals

𝐷𝑃 𝑝 𝑞 = answer for the original problem 
                       on instance (𝑎𝑝, … , 𝑎𝑞) 



Subproblem
Given an array 𝑎1, … 𝑎𝑛 (𝑛 ≤ 500) and integers 𝑑, 𝑟

We can repeat following:
◦ Take interval [𝑝, 𝑞] with 𝑎𝑝 + ⋯ + 𝑎𝑞 = 𝑘𝑑 + 𝑟 for some integer 𝑘

◦ Remove these elements and squeeze the sequence

Assuming we remove all elements,
maximizing the total 𝑘’s is equivalent to 
minimizing the number of operations

Proof: total 𝑘’s = 
∑𝑎𝑖−𝑟⋅#𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑑



Subproblem
Minimize the number of operations, 
assuming we remove all elements

Let 𝑏 be the minimum positive integer with
𝑎1 + ⋯ + 𝑎𝑛 ≡ 𝑏𝑟 (mod 𝑑)

We can show either 𝑏 operation is enough, 
or it is impossible to remove entire sequence

Proof: if we use 𝑏′ > 𝑏 operations, 
we can unify last 𝑏′ − 𝑏 + 1 operations into one operation



Subproblem
So the problem is:
Is it possible to remove entire sequence?

This is solved by the following 𝑂 𝑛3 -time DP on intervals

𝐷𝑃 𝑝 𝑞 = maximum number of operations 
                       to remove whole interval (𝑎𝑝, … , 𝑎𝑞)
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