
Commentaries on
Problems
ICPC 2024 ASIA YOKOHAMA REGIONAL JUDGE TEAM

(CHIEF: YUTARO YAMAGUCHI)

ALL teams get ACs for Problems A and B!! Congratulations!!

Easy DifficultJudges’ Estimation

ALL teams get at least 3 ACs!!! Congratulations!!!

A: Ribbon on the
Christmas Present

PROPOSER: KAZUHIRO INABA
AUTHOR: TOMOHARU UGAWA

Problem
Dye white ribbon and make the “planned pattern.”
◦ Contiguous segments can be dyed in a single step

◦ A darker color masks lighter color

Compute the minimum possible number of dyeing steps

…
init

plan

Dyeing Process Diagram (DPD)
Consider the dyeing process using a layered diagram, DPD
◦ Dye a chunk of contiguous sections at once

◦ Dye from lighter to darker colors

Find an optimal DPD
◦ DPD with the fewest chunks of continuous sections

created pattern

DPD (not optimal)

Key Observation
Any DPD will give the planned pattern if the surface is
correct for each section.

Our Problem:
Fill some of the hidden chunks and make an optimal DPD

?
?

hidden chunks

Approach
Fill the hidden chunk between surface chunks and merge
them into a single chunk.

fill this gap

surface chunk

Cases
⚫hidden chunk between chunks => must be filled

⚫half-open hidden chunk => arbitrary

⚫double-open hidden chunk => must not be filled

left-open right-open

Typical submitted wrong
answers filled this case

One of the Solutions
Fill hidden chunks that follow to surface chunks.

gap => fill right-open => fill left-open => not fill

Resulting DPD

Algorithm
For each color, scan the planned pattern from left to right.

Start making a merged chunk when the color appear.

Stop merging when a lighter color appear or at the end of
the ribbon.

plan

Scan from left to right once while managing a stack of the
colors of “merging layers”
◦ stack top = next color: proceed to right

◦ stack top < next color: push next color, count++

◦ stack top > next color: pop

O(n) Algorithm

plan

Scan from left to right once while managing a stack of the
colors of “merging layers”
◦ stack top = next color: proceed to right

◦ stack top < next color: push next color, count++

◦ stack top > next color: pop

O(n) Algorithm

plan

B: The Sparsest
Number in Between

PROPOSER: ETSUYA SHIBAYAMA
AUTHOR: ETSUYA SHIBAYAMA

Problem Descriptions
Input: two positive integers 𝑎 and 𝑏
(𝑎 ≤ 𝑏)

Challenge: find the sparsest integer
between 𝑎 and 𝑏, inclusive

Definition: 𝑥 is sparser than 𝑦 if and only if the
binary representation of 𝑥 has a smaller
number of 1’s than that of 𝑦

Smallest

Example

When 10 and 15 are given

Decimal Binary # of 1’s

10 1010 2

11 1011 3

12 1100 2

13 1101 3

14 1110 3

15 1111 4

The Answer

The Integers
in Between Sparsest

Solution
Since 𝑎 and 𝑏 can be large (up to 1018), a naïve
search like the following does not work

Proper division of cases, like a mathematical
proof, can help you

for (long long i = a; i <= b; i++) {
 // do some work
}

Division of Cases
Case 1: 𝒂 is a power of two (𝟐𝒏)

The answer is 𝒂 itself

𝑎’s binary rep. has just a single 1, and thus sparsest and
smallest

[Hereafter, we assume that 𝑎 is not a power of two]

Decimal Binary

a 8 1000

answer 8 1000

b 19 10011

Division of Cases
Case 2a: the binary rep. of 𝒂 is shorter than that of 𝒃

The answer is the smallest power of two greater than 𝒂

Suppose for instance that 14 and 33 are given

Obviously, 14 ≤ 16(= 24) ≤ 33, and 16 is the smallest
among the sparsest

Decimal Binary

a 14 1110

answer 16 10000

b 33 100001

Division of Cases
Case 2b: the binary reps. of 𝒂 and 𝒃 are of the same length

The binary rep. of the answer must share the same
common prefix as 𝒂’s and 𝒃’s

The rest of the binary rep. of the answer can be found in a
similar manner as case 1 or 2a

Unless 𝑎 = 𝑏, the rest parts of the 𝑎’s and 𝑏’s binary reps.
always start with 0 and 1, respectively.

Decimal Binary

Common prefix Suffix

a 43 101 011

answer 44 101 100

b 47 101 111

How to deal with binary reps.
You may use bit operations

You may also first convert numbers to strings and then use
string operations

C: Omnes Viae
Yokohamam Ducunt?

PROPOSER: MASATOSHI KITAGAWA
AUTHOR: MASATOSHI KITAGAWA

Problem
Given a weighted undirected graph 𝐺 = 𝑉, 𝐸 .
◦ 𝑝𝑣: weight of a vertex 𝑣 (significance value)

◦ 𝑞𝑒: weight of an edge 𝑒 (vulnerability)

◦ 𝑠 ∈ 𝐺: Yokohama

Minimize the cost (total risk severity) of spanning trees of 𝐺.

Problem(Cost)
For a spanning tree 𝑇 = 𝑉, 𝐸𝑇 of 𝐺,

cost of 𝑇 ≔ ෍

𝑒∈𝐸𝑇

𝑞𝑒 ෍

𝑣

𝑝𝑣 .

The second sum is taken over all 𝑣 ∈ 𝑉 inaccessible from 𝑠 in 𝑇 −
𝑒 .

Problem(Cost)
For a spanning tree 𝑇 = 𝑉, 𝐸𝑇 of 𝐺,

cost of 𝑇 ≔ ෍

𝑒∈𝐸𝑇

𝑞𝑒 ෍

𝑣

𝑝𝑣 .

The second sum is taken over all 𝑣 ∈ 𝑉 inaccessible from 𝑠 in 𝑇 −
𝑒 .

Minimum spanning tree problem?

Problem(Cost)
For a spanning tree 𝑇 = 𝑉, 𝐸𝑇 of 𝐺,

cost of 𝑇 ≔ ෍

𝑒∈𝐸𝑇

𝑞𝑒 ෍

𝑣

𝑝𝑣 .

The second sum is taken over all 𝑣 ∈ 𝑉 inaccessible from 𝑠 in 𝑇 −
𝑒 .

Minimum spanning tree problem?

No!

The cost of 𝑒 depends on 𝑇.

Rewrite Cost

cost of 𝑇 ≔ ෍

𝑒∈𝐸𝑇

𝑞𝑒 ෍

𝑣

𝑝𝑣 .

Swapping the two sums,

cost of 𝑇 = ෍

𝑣∈𝑉

𝑝𝑣 ෍

𝑒

𝑞𝑒 .

The second sum is taken over all 𝑒 in the 𝑠−𝑣 path in 𝑇.

Rewrite Cost

cost of 𝑇 ≔ ෍

𝑒∈𝐸𝑇

𝑞𝑒 ෍

𝑣

𝑝𝑣 .

Swapping the two sums,

cost of 𝑇 = ෍

𝑣∈𝑉

𝑝𝑣 ෍

𝑒

𝑞𝑒 .

The second sum is taken over all 𝑒 in the 𝑠−𝑣 path in 𝑇.

cost of 𝑇 = ෍

𝑣∈𝑉

𝑝𝑣 distance from 𝑠 to 𝑣 in 𝑇 .

Solution

cost of 𝑇 = ෍

𝑣∈𝑉

𝑝𝑣 distance from 𝑠 to 𝑣 in 𝑇

This cost is minimized when 𝑇 is a shortest-path tree rooted
at 𝑠.

Solution

cost of 𝑇 = ෍

𝑣∈𝑉

𝑝𝑣 distance from 𝑠 to 𝑣 in 𝑇

This cost is minimized when 𝑇 is a shortest-path tree rooted
at 𝑠.

Dijkstra’s algorithm!

D: Tree Generators
PROPOSER: MITSURU KUSUMOTO

AUTHOR: MITSURU KUSUMOTO

Parsing!!

Syntax is

E ::= 1 | (E E)

‘1’ = Single vertex

1

It’s a tree

‘(E1 E2)’ = Add one edge randomly
 between two trees
 generated by E1 & E2

1

2

3

4
1

2

3

Generated from E1 Generated from E2
(labels are increased)

5

6

7?

Input: Two expressions

Output: # of trees generated from them
in common modulo 998244353

Solve in linear time.

Trees generated
So, what kind of trees can be generated?

Assume that generated trees contains n vertices.

After parsing an expression, you can obtain triples (ai, bi, ci)
(i=1,...,n-1) such that

Each edge is randomly chosen from [ai, bi] x [bi+1, ci]

Example (Sample 3)

E=(((11)(11))((11)1))

1 2 3 4 5 6 7

((11)1)

(11)

((11)(11))

(11)(11)

1111111

Example (Sample 3)

E=(((11)(11))((11)1))

1 2 3 4 5 6 7

((11)1)

(11)

((11)(11))

(11)(11)

1111111

(1,4,7)

(5,6,7)

(5,5,6)

(1,2,4)

(3,3,4)(1,1,2)

Black node = single edge addition step
Triples are shown below the node

Example (Sample 3)

E=(((11)(11))((11)1))

1 2 3 4 5 6 7

((11)1)

(11)

((11)(11))

(11)(11)

1111111

(1,4,7)

(5,6,7)

(5,5,6)

(1,2,4)

(3,3,4)(1,1,2)

Black node = single edge addition step
Triples are shown below the node

This represents adding edges from
• [1,4]x[5,7]
• [1,2]x[3,4]
• (1,2)
• (3,4)
• (5,6)
• [5,6]x{7}

Trees generated (2)
So, what kind of trees can be generated?

Assume that generated trees contains n vertices.

After parsing an expression, you can obtain triples (ai, bi, ci)
(i=1,...,n-1) such that

Each edge is randomly chosen from [ai, bi] x [bi+1, ci]

Values bi appears just once in the triples; Let’s simplify this:

Each edge is randomly chosen from [ai, i] x [i+1, ci]

This is like, the gap between i and i+1 is generating an edge.

Example revised
E=(((11)(11))((11)1))

1 2 3 4 5 6 7

4

2

31 5

6

((11)1)

(11)

((11)(11))

(11)(11)

1111111

(1,7)

(5,7)

(5,6)

(1,4)

(3,4)(1,2)

Black node = single edge addition step
(ai, ci) is shown below

Solution
Suppose that pairs (a’i, c’i) are obtained from the other
expression.

Then, the solution is

ෑ

𝑖=1

𝑛−1

𝑖 − max 𝑎𝑖 , 𝑎′𝑖 + 1 × min 𝑐𝑖 , 𝑐𝑖
′ − 𝑖 .

The remaining part is the proof for this.

Correspondence (1)
Suppose that a tree is generated from E.
For each edge, can we identify which gap generated it?

Answer: We can uniquely identify.

Why? Traversing the generation steps in the parsed tree
from top to bottom will give one-to-one correspondence
between edges and generations.

Example revised (2)
E=(((11)(11))((11)1))

1 2 3 4 5 6 7

4

2

31 5

6

((11)1)

(11)

((11)(11))

(11)(11)

1111111

(1,7)

(5,7)

(5,6)

(1,4)

(3,4)(1,2)

Black node = single edge addition step
(ai, ci) is shown below

There can be only one
edge between [1,4]x[5,7].
In this example, it’s (3,5).
After removing (3,5), we
can recursively do this
identification process.

Generated
tree →

Correspondence (2)
Now, suppose that a tree is generated from both E1 and E2.

For an edge (j, k), if

(j, k) is generated from the gap between i and i+1 in E1, and
(j, k) is generated from the gap between i’ and i’+1 in E2,

then, we denote as π(i) = i’.

The mapping π is bijective. We can show that π must be an
identity function. This justifies the solution mentioned.

Proof by infinite decent
Suppose that π is not an identity. This means there exists a
pair i≠j s.t. j=π(i).

From some observation, ai ≤ j < ci.

For k=1,...,n-1, let f(k) = ck - ak.

Then, f(i) = ci - ai > f(j) holds. If we continue this, we have

However, since π is bijective, this deduction eventually
results in f(i) > f(i). This is contradiction. Thus, π is identity.

f(i) > f(j) > f(j’) > f(j’) > ... for j’=π(j), j’’=π(j’), ...

E: E-Circuit Is
Now on Sale!

PROPOSER: SHINYA SHIROSHITA
AUTHOR: SHINYA SHIROSHITA

Problem
You are given a tree of a mathematical formula embedded
in a grid space.

Your task is to calculate the result of the formula.

P (root)

5

3 4

-

*

5 . P . .

- # .

. . . * 4

. 3 # # .

1 ≤ 𝑛, 𝑚 ≤ 50.

𝑚

𝑛

Node types
Following nodes are provided.

P (root)

5

3 4

-

*
12

7

→ print “7”

• Printer (P) : the root node.

• Digit (0-9) : a leaf node with a value.

• Operator (+-*/) : a node applying an
arithmetic operation.

(“#” forms edges connecting nodes.)

𝐴 𝐵

+

𝐴 𝐵

-

𝐴 𝐵

*

𝐴 𝐵

/

𝐴 + 𝐵 𝐴 − 𝐵 𝐴 × 𝐵

max{𝐴, 𝐵}

min{𝐴, 𝐵}

Solution
Traverse the tree from the printer recursively.

•For an operator cell,
• Traverse a subtree of one connection and memorize the result.

• Traverse the other connection and apply the operator’s calculation.

Be careful about careless mistakes!

 Overflow, out of range, infinite loop, …

It is wasteful to get penalties by
careless mistakes.

20 min

20 min

20 min

20 mi

F: The Farthest Point
PROPOSER: F.YAMAGUCHI

AUTHOR: F.YAMAGUCHI

Problem
Given: the size (edge lengths) of a rectangular cuboid

Write a program which computes the distance from a vertex
to its farthest point on the surface of the cuboid.

the starting vertex

the opposite vertex
the farthest point

Core Idea

Any path from the farthest point to the
starting vertex has the same distance.

the starting vertex

an alias of
the starting vertex

an alias of
the starting
vertex

The farthest point is the circumcenter of the
triangle consists of the starting vertex and
its two aliases on a net.

the opposite
vertex

Calculate the length of the longest path to
the candidate among sufficient net settings.

For a candidate of the farthest point,
the segment between the starting
vertex and the candidate point should
not cross any edge of the net.

Note that...

Distance is the length of
the shortest path among all
possible paths.

The distance from the
starting point is not a
convex function.

G: Beyond the
Former Exploer

PROPOSER: KOHEI MORITA
AUTHOR: KOHEI MORITA

+ MITSURU KUSUMOTO

→ → ↓

↑ ↓

↑ ↓

↑ ↓ ←

↑ ← ← ←

Only
３００００

Query

→ → ↓

↑ ↓

↑ ↓

↑ ↓ ←

↑ ← ← ←

Original idea

Solution

Interactive Problem

Solution

Interactive Problem

As usual:
Binary Search

← ←

↓→
→

←←

S
→

Compare (left →) vs (right ←)

Left region has G(goal)

← ←

↓→
→

←←

S
→

Compare (left →) vs (right ←)

Left region has G(goal)

𝑂(𝑁 log 𝑁)

AC …. ?

𝑂(𝑁 log 𝑁) =

4𝑁 = 8000 log 𝑁 = 11x =

88000 queries

AC …. ?

𝑂(𝑁 log 𝑁) =

4𝑁 = 8000 log 𝑁 = 11x =

88000 queries
Only

３００００
Query

4𝑁 = 8000

AC …. ?

𝑂(𝑁 log 𝑁) =

log 𝑁 = 11x =

88000 queries
Only

３００００
Query

𝑂(𝑁 log 𝑁) is
insufficient

Vertical
→ Horizontal
→ Vertical
→ Horizontal
:

Vertical
→ Horizontal
→ Vertical
→ Horizontal
:

𝑂 𝑁 query

Full editorial(1/3)
The core idea is that for a continuous region with a grid, it is possible to
determine whether the goal (G) is included in the region without
examining every cell. To know this, it is sufficient to count the number
of times the path "enters" and "exits" the region. This can be done by
knowing only the boundary parts, that is, the cells in the region that
touch the outside and the cells outside that touch the region.

Based on this consideration, for example, by examining all the cells in
the 𝑖-th and 𝑖 + 1-th columns, it is possible to determine whether the
goal is on the left or right.

Therefore, by performing a binary search on the range of columns
where the goal might exist, it is possible to identify the goal with
𝑂(𝑁 log 𝑁) queries. However, since it is necessary to examine 4𝑁 cells
in one step of the search, this approach is hard to get accept in terms of
the number of queries.

Full editorial(2/3)
A further improvement is to reduce the number of queries by searching in the order of (split the
region vertical) → horizontal → vertical → horizontal → ... like a KD-tree. The logic is as follows:

- First, examine the central 2 columns (4𝑁 cells) to determine whether the goal is on the left or
right.

- Examine the central 2 rows (2𝑁 cells) to determine whether the goal is up or down. This will
make the region where the goal might exist a square of 𝑁 × 𝑁 (the size will vary by ±1
depending on which of the four sides is chosen).

- Examine the central 2 columns (2𝑁 cells) to determine whether the goal is on the left or right.

- Examine the central 2 rows (𝑁 cells) to determine whether the goal is up or down.

- ... and repeat this search.

Since the number of cells required for the search is halved every 2 steps, the order of the
number of queries for the entire search improves to O(𝑁). Specifically, estimating the constants,
the number of cells required for the search is 4𝑁 + 2𝑁 + 2𝑁 + 𝑁 + 𝑁 + ⋯ = 12𝑁 cells, so
there is enough margin against the query limit of 30000.

Full editorial(3/3)
The next consideration is how to move. In fact, there is a solution that requires only O(1) extra moves per step,
that is, a total of 12𝑁 + 𝑂(log 𝑁) queries (Bonus), but it is assumed to be complicated to implement.

Since there is a margin of about 3N queries, it is desired to simplify the implementation as appropriate.

Various approaches can be considered, but one example is to assume that "the starting point of each step is at
the center of the region." In other words,

- First, examine the central 2 columns (4N cells) to determine whether the goal is on the left or right.
 - Move to the center of the new region with N/2 queries.

- Examine the central 2 rows (2N cells) to determine whether the goal is up or down.
 - Move to the center of the new region with N/2 queries.

- Examine the central 2 columns (2N cells) to determine whether the goal is on the left or right.
 - Move to the center of the new region with N/4 queries.

- Examine the central 2 rows (N cells) to determine whether the goal is up or down.
 - Move to the center of the new region with N/4 queries.

- ... and repeat this search.

With this approach, the extra moves increase by about 2N cells, but this is within the acceptable range.

H: Remodeling the
Dungeon 2

PROPOSER: YUTARO YAMAGUCHI
AUTHOR: RYOTARO SATO

Problem Statement
Given connected graph on ℎ × 𝑤 2D grid (ℎ, 𝑤 ≤ 400),
find subset of edges (or report it is impossible) such that:

• All vertices and selected edges form a tree.

• Distances between all pair of leaves are even.

Distance = 8 (Even)

Input Output

Grid Graph Is Bipartite
Let input graph 𝐺 be represented as 𝑈, 𝑉, 𝐸 .

For simplicity, assume 𝑈 ≤ 𝑉 .

1 2 3

4 5 6

7 8 9

2

4

6

8

3

1

5

7

9

𝑈 = 2, 4, 6, 8
𝑉 = 3, 1, 5, 7, 9
𝐸 = all edges

Rephrased Constraint
Distances between all pairs of leaves are even.

⇔ Either 𝑈 or 𝑉 does not contain any leaves.

2

4

6

8

3

1

5

7

9

𝑈 𝑉

2

4

6

8

3

1

5

7

9

𝑈 has no leaves

Cases of 𝑈 = 𝑉
When 𝑈 = 𝑉 , always infeasible!

∵) Suppose 𝐺 = 𝑈, 𝑉, 𝐸 has no leaves in 𝑈 and satisfies
𝑈 = 𝑉 . Clearly, 𝐸 ≥ 2 𝑈 = 𝑈 + 𝑉 , which implies 𝐺′

contains cycle(s). ■

Hereafter, we assume 𝑈 < 𝑉 and 𝑈 has no leaves.

Updated Problem Statement
Given 𝐺 = 𝑈, 𝑉, 𝐸 𝑈 < 𝑉 , find 𝐸′ ⊂ 𝐸 such that:

• Each vertex in 𝑈 has two (or more) adjacent edges in 𝐸′

• 𝑈, 𝑉, 𝐸′ is a tree graph

 Then, how to assign two edges for each vertex in 𝑈 without
making any cycles?

Note: This is typical matroid intersection problem, but naive
implementations of general MI instances are too slow for
prepared testcases!

Step 1. Maximum Matching
First, find maximum matching of 𝑈, 𝑉, 𝐸 .

Can be done by Hopcroft–Karp algorithm, 𝑂 𝐸 1.5 .

If size of matching < 𝑈 , infeasible!

2

4

6

8

3

1

5

7

9

𝑈 𝑉

Step 2. DFS
Run DFS on the directed graph, from all vertices in 𝑉 NOT
used in matching. Edges’ directions:
• NOT used in matching: 𝑉-to-𝑈

• USED in matching: 𝑈-to-𝑉

2

4

6

8

3

1

5

7

9

𝑈 𝑉

2

4

6

8

3

1

5

7

9

2

4

6

8

3

1

5

7

9

Convert to
Directed Graph

DFS

Each vertex has
two (in & out) edges

Start

Infeasible Cases
 If some vertices are unreachable by DFS, infeasible!

∵) 𝑈′ ⊂ 𝑈 : set of all unreachable vertices.
𝑉′ ⊂ 𝑉 : set of all vertices adjacent to any vertex in 𝑈′.
We can prove 𝑉′ ≤ 𝑈′ (Exercise), which means it is
impossible to choose 2 𝑈′ edges adjacent to 𝑈′ without
making any cycle. ■

2

4

6

1

3

5

7

1 2 3

4 5 6

7

2

4

6

1

3

5

7
Unreachable𝑈 𝑉

𝑈′

𝑉′

Step 3. Make Graph Connected
We obtained the DFS forest that satisfies degree constraints.

Finally, do not forget to adopt additional edges to make
graph connected!

Overall complexity: 𝑂 ℎ𝑤 1.5 (bounded by finding max

matching).

I: Greatest of the
Greatest Common
Divisors

PROPOSER: TOMOHIRO OKA
AUTHOR: TOMOHIRO OKA

Problem
Given positive integer sequence and intervals.

Choose a pair of 2 indices from the interval (L, R), consider
the GCD of the values.

Output the greatest of the GCD among all pairs from the
interval.

6 2 14 4 3 2 5 1 7

gcd(14, 7) = 7gcd(6, 4) = 2

Solution
• Common divisor
▪ ⇨ A value appears twice in the interval as a divisor.

• Read sequence from left to right

• Manage the rightmost and second rightmost indices

6 2 14 4 3 2 5 1 -

d 1 2 3 4 5 6 7 ...

f(d) 8 6 5 4 7 -1 3

s(d) 7 4 1 -1 -1 -1 -1

Solution
• Common divisor
▪ ⇨ A value appears twice in the interval as a divisor.

• Read sequence from left

• Manage the rightmost and second rightmost indices

6 2 14 4 3 2 5 1 7

d 1 2 3 4 5 6 7 ...

f(d) 9 6 5 4 7 -1 9

s(d) 8 4 1 -1 -1 -1 3

Update d=1, 7

Solution
• When i-th element is updated, solve all queries that have R=i
▪ f(d)≦ R is satisfied for all d

• If L ≦ s(d) is satisfied, then d is a common divisor in the interval
▪ Find argmaxd { L ≦ s(d) }

6 2 14 4 3 2 5 1 7

d 1 2 3 4 5 6 7 ...

f(d) 9 6 5 4 7 -1 9

s(d) 8 4 1 -1 -1 -1 3

Solution
• Build a segment tree (range maximum query) for s(d)

• Binary search on segment tree

6 2 14 4 3 2 5 1 7

d 1 2 3 4 5 6 7 ...

s(d) 8 4 1 -1 -1 -1 3

8

8 3

8 -1 3 3

Binary search when L=3 ⇨ answer d=7

...

Summary
•Group intervals by R

•Read the sequence from left to right

•Update second rightmost indices of divisors, and the
segment tree

•Binary search with the condition { L ≦ s(d) } on the tree

•Maximum d is the greatest GCD

J: Mixing Solutions
PROPOSER: NAOKI MARUMO

AUTHOR: NAOKI MARUMO
+ KOHEI MORITA

Problem

𝑙, 𝑟 : concentration range of the mixed solution

Mix parts of 𝑛 solutions to make a new solution

Given:

• amount

• range of concentration

• amount

• target concentration 𝑐

Minimize: Max. Error max
𝑥∈ 𝑙,𝑟

𝑥 − 𝑐

of each prepared solution

of the mixed solution

Reformulate Problem

of each prepared solution

of the mixed solution

𝑙, 𝑟 : concentration range of the mixed solution

Mix parts of 𝑛 solutions to make a new solution

Given:

• amount

• range of concentration

• amount

• target concentration 𝑐

Minimize: Max. Error max
𝑥∈ 𝑙,𝑟

𝑥 − 𝑐 = max 𝑐 − 𝑙, 𝑟 − 𝑐

Reformulate Problem

We want to solve

but what range does 𝑙, 𝑟 ∈ ℝ2 move over?

𝑙, 𝑟 : concentration range of the mixed solution

min
𝑙, 𝑟

max 𝑐 − 𝑙, 𝑟 − 𝑐

Reformulate Problem

We want to solve

but what range does 𝑙, 𝑟 ∈ ℝ2 move over?

The set of possible 𝑙, 𝑟 ∈ ℝ2 is a convex polygon!

➢ Note: A convex combination of two valid mixings is also valid

𝑙, 𝑟 : concentration range of the mixed solution

min
𝑙, 𝑟

max 𝑐 − 𝑙, 𝑟 − 𝑐

Reformulate Problem

We want to solve

• 𝑥, 𝑦 ≔ 𝑐 − 𝑙, 𝑟 − 𝑐

• 𝑥, 𝑦 also moves over a convex polygon, 𝑃

𝑙, 𝑟 : concentration range of the mixed solution

min
𝑙, 𝑟

max 𝑐 − 𝑙, 𝑟 − 𝑐 = min
𝑥,𝑦 ∈𝑃

max 𝑥, 𝑦

Three cases

𝑥

𝑦

𝑃
𝑦 = 𝑥

𝑥

𝑦

𝑃

𝑦 = 𝑥

𝑥

𝑦

𝑃

𝑦 = 𝑥

Most interesting case

min
𝑥,𝑦 ∈𝑃

max 𝑥, 𝑦

Outline of solution

• The red point can be easily obtained from two adjacent
green vertices

• Compute the green vertices by binary search

min
𝑥,𝑦 ∈𝑃

max 𝑥, 𝑦

optimal 𝑥, 𝑦
𝑥

𝑦

𝑃

𝑦 = 𝑥

• Each vertex is the point minimizing
the inner product with a vector

• Given a vector, the vertex that
minimizes the inner product can be
computed greedily in O 𝑛 log 𝑛 time

• Green vertices can be computed by binary searching
the vectors

Compute green vertices

𝑥

𝑦

𝑃

𝑦 = 𝑥

Details

For the binary search, we can

• precompute Θ 𝑛2 candidate vectors and sort them

→ O 𝑛2 log 𝑛 solution

• use
1

𝐵
,

𝐵−1

𝐵
,

2

𝐵
,

𝐵−2

𝐵
, … ,

𝐵−1

𝐵
,

1

𝐵
 with 𝐵 = Θ 𝑀2

→ O 𝑛 log 𝑛 log 𝑀 solution

Problem J can also be solved using the minimax theorem
or LP duality, without relying on geometric insights

K: Scheduling Two
Meetings

PROPOSER: KAZUHIRO INABA
AUTHOR: KAZUHIRO INABA

Problem

Given many M-bits
words, find a pair
(a,b) such that

 a|b = 11…11
 a&b has the most 1s

1 01

110

1 10

0 10

M ≦ 20

N
 ≦
2*105

Solution

For each word, find the best buddy!
Naïve Θ(N2) loop will hit TLE, though…

1 01

110

1 10

0 10

0 10 1 10 1101 01

0

1 1

1 1

1 1

0

0 11

0 00

0 10 0 01 1 00

0 11 1 10 1 01

1 11

The best buddy => word with the most 1s among
supersets of the complement!

Solution

0 00

0 10 0 01 1 00

0 11 1 10 1 01

1 11

The diagram can be preprocessed in O(M・2M) time
dynamic programming. O(N + M・2M) time in total.

dp[bitpat] :=
 the best word in input
 among supersets of bitpat

dp[bitpat]
 = max(dp[bitpat|1<<i], …)
 for i in 0 .. M-1

The corner case, that many
teams were trapped

1 11

0 00

0 10 0 01 1 00

0 11 1 10 1 01

1 11

L: Peculiar Protocol
PROPOSER: KAZUHIRO INABA

AUTHOR: SOH KUMABE

Problem
Given an array 𝑎1, … 𝑎𝑛 (𝑛 ≤ 500) and integers 𝑑, 𝑟

We can repeat following:
◦ Take interval [𝑝, 𝑞] with 𝑎𝑝 + ⋯ + 𝑎𝑞 = 𝑘𝑑 + 𝑟 for some integer 𝑘

◦ Remove these elements and squeeze the sequence

Maximize the total of 𝑘’s

Subproblem
Given an array 𝑎1, … 𝑎𝑛 (𝑛 ≤ 500) and integers 𝑑, 𝑟

We can repeat following:
◦ Take interval [𝑝, 𝑞] with 𝑎𝑝 + ⋯ + 𝑎𝑞 = 𝑘𝑑 + 𝑟 for some integer 𝑘

◦ Remove these elements and squeeze the sequence

First, consider the following variant:

Maximize the total of 𝑘’s,
assuming we remove all elements

Subproblem
First, consider the following variant:

Maximize the total of 𝑘’s,
assuming we remove all elements

If this variant on all intervals 𝑎𝑝, … , 𝑎𝑞 are solved,
remaining task is the following 𝑂 𝑛3 -time DP on intervals

𝐷𝑃 𝑝 𝑞 = answer for the original problem
 on instance (𝑎𝑝, … , 𝑎𝑞)

Subproblem
Given an array 𝑎1, … 𝑎𝑛 (𝑛 ≤ 500) and integers 𝑑, 𝑟

We can repeat following:
◦ Take interval [𝑝, 𝑞] with 𝑎𝑝 + ⋯ + 𝑎𝑞 = 𝑘𝑑 + 𝑟 for some integer 𝑘

◦ Remove these elements and squeeze the sequence

Assuming we remove all elements,
maximizing the total 𝑘’s is equivalent to
minimizing the number of operations

Proof: total 𝑘’s =
∑𝑎𝑖−𝑟⋅#𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑑

Subproblem
Minimize the number of operations,
assuming we remove all elements

Let 𝑏 be the minimum positive integer with
𝑎1 + ⋯ + 𝑎𝑛 ≡ 𝑏𝑟 (mod 𝑑)

We can show either 𝑏 operation is enough,
or it is impossible to remove entire sequence

Proof: if we use 𝑏′ > 𝑏 operations,
we can unify last 𝑏′ − 𝑏 + 1 operations into one operation

Subproblem
So the problem is:
Is it possible to remove entire sequence?

This is solved by the following 𝑂 𝑛3 -time DP on intervals

𝐷𝑃 𝑝 𝑞 = maximum number of operations
 to remove whole interval (𝑎𝑝, … , 𝑎𝑞)

	スライド 1: Commentaries on Problems
	スライド 2
	スライド 3
	スライド 4: A: Ribbon on the Christmas Present
	スライド 5: Problem
	スライド 6: Dyeing Process Diagram (DPD)
	スライド 7: Key Observation
	スライド 8: Approach
	スライド 9: Cases
	スライド 10: One of the Solutions
	スライド 11: Resulting DPD
	スライド 12: Algorithm
	スライド 13: O(n) Algorithm
	スライド 14: O(n) Algorithm
	スライド 15: B: The Sparsest Number in Between
	スライド 16: Problem Descriptions
	スライド 17: Example
	スライド 18: Solution
	スライド 19: Division of Cases
	スライド 20: Division of Cases
	スライド 21: Division of Cases
	スライド 22: How to deal with binary reps.
	スライド 23: C: Omnes Viae Yokohamam Ducunt?
	スライド 24: Problem
	スライド 25: Problem(Cost)
	スライド 26: Problem(Cost)
	スライド 27: Problem(Cost)
	スライド 28: Rewrite Cost
	スライド 29: Rewrite Cost
	スライド 30: Solution
	スライド 31: Solution
	スライド 32: D: Tree Generators
	スライド 33
	スライド 34
	スライド 35
	スライド 36
	スライド 37
	スライド 38: Trees generated
	スライド 39: Example (Sample 3)
	スライド 40: Example (Sample 3)
	スライド 41: Example (Sample 3)
	スライド 42: Trees generated (2)
	スライド 43: Example revised
	スライド 44: Solution
	スライド 45: Correspondence (1)
	スライド 46: Example revised (2)
	スライド 47: Correspondence (2)
	スライド 48: Proof by infinite decent
	スライド 49: E: E-Circuit Is Now on Sale!
	スライド 50: Problem
	スライド 51: Node types
	スライド 52: Solution
	スライド 53: F: The Farthest Point
	スライド 54: Problem
	スライド 55
	スライド 56
	スライド 57: G: Beyond the Former Exploer
	スライド 58
	スライド 59: Original idea
	スライド 60: Solution
	スライド 61: Solution
	スライド 62
	スライド 63
	スライド 64: AC …. ?
	スライド 65: AC …. ?
	スライド 66: AC …. ?
	スライド 67
	スライド 68
	スライド 69: Full editorial(1/3)
	スライド 70: Full editorial(2/3)
	スライド 71: Full editorial(3/3)
	スライド 72: H: Remodeling the Dungeon 2
	スライド 73: Problem Statement
	スライド 74: Grid Graph Is Bipartite
	スライド 75: Rephrased Constraint
	スライド 76: Cases of 絶対値 大文字 U , 絶対値の最後 イコール 絶対値 大文字 V , 絶対値の最後
	スライド 77: Updated Problem Statement
	スライド 78: Step 1. Maximum Matching
	スライド 79: Step 2. DFS
	スライド 80: Infeasible Cases
	スライド 81: Step 3. Make Graph Connected
	スライド 82: I: Greatest of the Greatest Common Divisors
	スライド 83: Problem
	スライド 84: Solution
	スライド 85: Solution
	スライド 86: Solution
	スライド 87: Solution
	スライド 88: Summary
	スライド 89: J: Mixing Solutions
	スライド 90: Problem
	スライド 91: Reformulate Problem
	スライド 92: Reformulate Problem
	スライド 93: Reformulate Problem
	スライド 94: Reformulate Problem
	スライド 95: Three cases
	スライド 96: Outline of solution
	スライド 97: Compute green vertices
	スライド 98: Details
	スライド 99: K: Scheduling Two Meetings
	スライド 100: Problem
	スライド 101: Solution
	スライド 102
	スライド 103: Solution
	スライド 104: The corner case, that many teams were trapped
	スライド 105: L: Peculiar Protocol
	スライド 106: Problem
	スライド 107: Subproblem
	スライド 108: Subproblem
	スライド 109: Subproblem
	スライド 110: Subproblem
	スライド 111: Subproblem

