
ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2014–10–19

Problem A

Bit String Reordering
Input: Standard Input
Time Limit: 1 second

You have to reorder a given bit string as specified. The only operation allowed is swapping
adjacent bit pairs. Please write a program that calculates the minimum number of swaps
required.

The initial bit string is simply represented by a sequence of bits, while the target is specified by
a run-length code. The run-length code of a bit string is a sequence of the lengths of maximal
consecutive sequences of zeros or ones in the bit string. For example, the run-length code of
“011100” is “1 3 2”. Note that there are two different bit strings with the same run-length code,
one starting with zero and the other starting with one. The target is either of these two.

In Sample Input 1, bit string “100101” should be reordered so that its run-length code is “1 3 2”,
which means either “100011” or “011100”. At least four swaps are required to obtain “011100”.
On the other hand, only one swap is required to make “100011”. Thus, in this example, 1 is the
answer.

Input

The input consists of a single test case. The test case is formatted as follows.

N M
b1 b2 . . . bN
p1 p2 . . . pM

The first line contains two integers N (1 ≤ N ≤ 15) and M (1 ≤ M ≤ N). The second line
specifies the initial bit string by N integers. Each integer bi is either 0 or 1. The third line
contains the run-length code, consisting of M integers. Integers p1 through pM represent the
lengths of consecutive sequences of zeros or ones in the bit string, from left to right. Here,
1 ≤ pj for 1 ≤ j ≤M and

∑M
j=1 pj = N hold. It is guaranteed that the initial bit string can be

reordered into a bit string with its run-length code p1, . . . , pM .

Output

Output the minimum number of swaps required.

1

Sample Input 1 Sample Output 1

6 3

1 0 0 1 0 1

1 3 2

1

Sample Input 2 Sample Output 2

7 2

1 1 1 0 0 0 0

4 3

12

Sample Input 3 Sample Output 3

15 14

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 2

7

Sample Input 4 Sample Output 4

1 1

0

1

0

2

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2014–10–19

Problem B

Miscalculation
Input: Standard Input
Time Limit: 1 second

Bob is an elementary schoolboy, not so good at mathematics. He found Father’s calculator
and tried cheating on his homework using it. His homework was calculating given expressions
containing multiplications and additions. Multiplications should be done prior to additions, of
course, but the calculator evaluates the expression from left to right, neglecting the operator
precedence. So his answers may be the result of either of the following two calculation rules.

• Doing multiplication before addition

• Doing calculation from left to right neglecting the operator precedence

Write a program that tells which of the rules is applied from an expression and his answer.

An expression consists of integers and operators. All the integers have only one digit, from 0
to 9. There are two kinds of operators + and *, which represent addition and multiplication,
respectively.

The following is an example expression.

1+2*3+4

Calculating this expression with the multiplication-first rule, the answer is 11, as in Sample
Input 1. With the left-to-right rule, however, the answer will be 13 as shown in Sample Input 2.

There may be cases in which both rules lead to the same result and you cannot tell which of the
rules is applied. Moreover, Bob sometimes commits miscalculations. When neither rules would
result in Bob’s answer, it is clear that he actually did.

Input

The input consists of a single test case specified with two lines. The first line contains the
expression to be calculated. The number of characters of the expression is always odd and less
than or equal to 17. Each of the odd-numbered characters in the expression is a digit from ‘0’
to ‘9’. Each of the even-numbered characters is an operator ‘+’ or ‘*’. The second line contains
an integer which ranges from 0 to 999999999, inclusive. This integer represents Bob’s answer
for the expression given in the first line.

3

Output

Output one of the following four characters:

M When only the multiplication-first rule results Bob’s answer.

L When only the left-to-right rule results Bob’s answer.

U When both of the rules result Bob’s answer.

I When neither of the rules results Bob’s answer.

Sample Input 1 Sample Output 1

1+2*3+4

11

M

Sample Input 2 Sample Output 2

1+2*3+4

13

L

Sample Input 3 Sample Output 3

3

3

U

Sample Input 4 Sample Output 4

1+2*3+4

9

I

4

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2014–10–19

Problem C

Shopping
Input: Standard Input
Time Limit: 1 second

Your friend will enjoy shopping. She will walk through a mall along a straight street, where N
individual shops (numbered from 1 to N) are aligned at regular intervals. Each shop has one
door and is located at the one side of the street. The distances between the doors of the adjacent
shops are the same length, i.e. a unit length. Starting shopping at the entrance of the mall, she
visits shops in order to purchase goods. She has to go to the exit of the mall after shopping.

She requires some restrictions on visiting order of shops. Each of the restrictions indicates that
she shall visit a shop before visiting another shop. For example, when she wants to buy a nice
dress before choosing heels, she shall visit a boutique before visiting a shoe store. When the
boutique is farther than the shoe store, she must pass the shoe store before visiting the boutique,
and go back to the shoe store after visiting the boutique.

If only the order of the visiting shops satisfies all the restrictions, she can visit other shops in
any order she likes.

Write a program to determine the minimum required walking length for her to move from the
entrance to the exit.

Assume that the position of the door of the shop numbered k is k units far from the entrance,
where the position of the exit is N + 1 units far from the entrance.

Input

The input consists of a single test case.

N m
c1 d1
...
cm dm

The first line contains two integers N and m, where N (1 ≤ N ≤ 1000) is the number of shops,
and m (0 ≤ m ≤ 500) is the number of restrictions. Each of the next m lines contains two
integers ci and di (1 ≤ ci < di ≤ N) indicating the i-th restriction on the visiting order, where
she must visit the shop numbered ci after she visits the shop numbered di (i = 1, . . . ,m).

There are no pair of j and k that satisfy cj = ck and dj = dk.

5

Output

Output the minimum required walking length for her to move from the entrance to the exit.
You should omit the length of her walk in the insides of shops.

Sample Input 1 Sample Output 1

10 3

3 7

8 9

2 5

23

Sample Input 2 Sample Output 2

10 3

8 9

6 7

2 4

19

Sample Input 3 Sample Output 3

10 0 11

Sample Input 4 Sample Output 4

10 6

6 7

4 5

2 5

6 9

3 5

6 8

23

Sample Input 5 Sample Output 5

1000 8

3 4

6 1000

5 1000

7 1000

8 1000

4 1000

9 1000

1 2

2997

6

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2014–10–19

Problem D

Space Golf
Input: Standard Input
Time Limit: 1 second

You surely have never heard of this new planet surface exploration scheme, as it is being carried
out in a project with utmost secrecy. The scheme is expected to cut costs of conventional rover-
type mobile explorers considerably, using projected-type equipment nicknamed “observation
bullets”.

Bullets do not have any active mobile abilities of their own, which is the main reason of their
cost-efficiency. Each of the bullets, after being shot out on a launcher given its initial velocity,
makes a parabolic trajectory until it touches down. It bounces on the surface and makes another
parabolic trajectory. This will be repeated virtually infinitely.

We want each of the bullets to bounce precisely at the respective spot of interest on the planet
surface, adjusting its initial velocity. A variety of sensors in the bullet can gather valuable data
at this instant of bounce, and send them to the observation base. Although this may sound like
a conventional target shooting practice, there are several issues that make the problem more
difficult.

• There may be some obstacles between the launcher and the target spot. The obstacles
stand upright and are very thin that we can ignore their widths. Once the bullet touches
any of the obstacles, we cannot be sure of its trajectory thereafter. So we have to plan
launches to avoid these obstacles.

• Launching the bullet almost vertically in a speed high enough, we can easily make it hit
the target without touching any of the obstacles, but giving a high initial speed is energy-
consuming. Energy is extremely precious in space exploration, and the initial speed of the
bullet should be minimized. Making the bullet bounce a number of times may make the
bullet reach the target with lower initial speed.

• The bullet should bounce, however, no more than a given number of times. Although
the body of the bullet is made strong enough, some of the sensors inside may not stand
repetitive shocks. The allowed numbers of bounces vary on the type of the observation
bullets.

You are summoned engineering assistance to this project to author a smart program that tells
the minimum required initial speed of the bullet to accomplish the mission.

Figure D.1 gives a sketch of a situation, roughly corresponding to the situation of the Sample
Input 4 given below.

7

d

p1

p2

p3

launcher target

h1
h2

h3

Figure D.1. A sample situation

You can assume the following.

• The atmosphere of the planet is so thin that atmospheric resistance can be ignored.

• The planet is large enough so that its surface can be approximated to be a completely flat
plane.

• The gravity acceleration can be approximated to be constant up to the highest points a
bullet can reach.

These mean that the bullets fly along a perfect parabolic trajectory.

You can also assume the following.

• The surface of the planet and the bullets are made so hard that bounces can be approxi-
mated as elastic collisions. In other words, loss of kinetic energy on bounces can be ignored.
As we can also ignore the atmospheric resistance, the velocity of a bullet immediately after
a bounce is equal to the velocity immediately after its launch.

• The bullets are made compact enough to ignore their sizes.

• The launcher is also built compact enough to ignore its height.

You, a programming genius, may not be an expert in physics. Let us review basics of rigid-body
dynamics.

We will describe here the velocity of the bullet v with its horizontal and vertical components vx
and vy (positive meaning upward). The initial velocity has the components vix and viy, that is,
immediately after the launch of the bullet, vx = vix and vy = viy hold. We denote the horizontal
distance of the bullet from the launcher as x and its altitude as y at time t.

8

• The horizontal velocity component of the bullet is kept constant during its flight when
atmospheric resistance is ignored. Thus the horizontal distance from the launcher is pro-
portional to the time elapsed.

x = vixt (1)

• The vertical velocity component vy is gradually decelerated by the gravity. With the
gravity acceleration of g, the following differential equation holds during the flight.

dvy
dt

= −g (2)

Solving this with the initial conditions of vy = viy and y = 0 when t = 0, we obtain the
following.

y = −1

2
gt2 + viyt (3)

= −
(

1

2
gt− viy

)
t (4)

The equation (4) tells that the bullet reaches the ground again when t = 2viy/g. Thus, the
distance of the point of the bounce from the launcher is 2vixviy/g. In other words, to make
the bullet fly the distance of l, the two components of the initial velocity should satisfy
2vixviy = lg.

• Eliminating the parameter t from the simultaneous equations above, we obtain the follow-
ing equation that describes the parabolic trajectory of the bullet.

y = −
(

g

2v2ix

)
x2 +

(
viy
vix

)
x (5)

For ease of computation, a special unit system is used in this project, according to which the
gravity acceleration g of the planet is exactly 1.0.

Input

The input consists of a single test case with the following format.

d n b
p1 h1
p2 h2
...
pn hn

The first line contains three integers, d, n, and b. Here, d is the distance from the launcher
to the target spot (1 ≤ d ≤ 10000), n is the number of obstacles (1 ≤ n ≤ 10), and b is the
maximum number of bounces allowed, not including the bounce at the target spot (0 ≤ b ≤ 15).

Each of the following n lines has two integers. In the k-th line, pk is the position of the k-th
obstacle, its distance from the launcher, and hk is its height from the ground level. You can
assume that 0 < p1, pk < pk+1 for k = 1, . . . , n − 1, and pn < d. You can also assume that
1 ≤ hk ≤ 10000 for k = 1, . . . , n.

9

Output

Output the smallest possible initial speed vi that makes the bullet reach the target. The initial
speed vi of the bullet is defined as follows.

vi =
√
vix2 + viy2

The output should not contain an error greater than 0.0001.

Sample Input 1 Sample Output 1

100 1 0

50 100

14.57738

Sample Input 2 Sample Output 2

10 1 0

4 2

3.16228

Sample Input 3 Sample Output 3

100 4 3

20 10

30 10

40 10

50 10

7.78175

Sample Input 4 Sample Output 4

343 3 2

56 42

190 27

286 34

11.08710

10

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2014–10–19

Problem E

Automotive Navigation
Input: Standard Input
Time Limit: 5 seconds

The International Commission for Perfect Cars (ICPC) has constructed a city scale test course for
advanced driver assistance systems. Your company, namely the Automotive Control Machines
(ACM), is appointed by ICPC to make test runs on the course.

The test course consists of streets, each running straight either east-west or north-south. No
streets of the test course have dead ends, that is, at each end of a street, it meets another one.
There are no grade separated streets either, and so if a pair of orthogonal streets run through
the same geographical location, they always meet at a crossing or a junction, where a car can
turn from one to the other. No U-turns are allowed on the test course and a car never moves
outside of the streets.

Oops! You have just received an error report telling that the GPS (Global Positioning System)
unit of a car running on the test course was broken and the driver got lost. Fortunately, however,
the odometer and the electronic compass of the car are still alive.

You are requested to write a program to estimate the current location of the car from available
information. You have the car’s location just before its GPS unit was broken. Also, you can
remotely measure the running distance and the direction of the car once every time unit. The
measured direction of the car is one of north, east, south, and west. If you measure the direction
of the car while it is making a turn, the measurement result can be the direction either before
or after the turn. You can assume that the width of each street is zero.

The car’s direction when the GPS unit was broken is not known. You should consider every
possible direction consistent with the street on which the car was running at that time.

Input

The input consists of a single test case. The first line contains four integers n, x0, y0, t, which
are the number of streets (4 ≤ n ≤ 50), x- and y-coordinates of the car at time zero, when the
GPS unit was broken, and the current time (1 ≤ t ≤ 100), respectively. (x0, y0) is of course on
some street. This is followed by n lines, each containing four integers xs, ys, xe, ye describing a
street from (xs, ys) to (xe, ye) where (xs, ys) 6= (xe, ye). Since each street runs either east-west
or north-south, xs = xe or ys = ye is also satisfied. You can assume that no two parallel streets
overlap or meet. In this coordinate system, the x- and y-axes point east and north, respectively.
Each input coordinate is non-negative and at most 50. Each of the remaining t lines contains
an integer di (1 ≤ di ≤ 10), specifying the measured running distance from time i− 1 to i, and
a letter ci, denoting the measured direction of the car at time i and being either N for north, E
for east, W for west, or S for south.

11

Output

Output all the possible current locations of the car that are consistent with the measurements.
If they are (x1, y1), (x2, y2), . . . , (xp, yp) in the lexicographic order, that is, xi < xj or xi = xj
and yi < yj if 1 ≤ i < j ≤ p, output the following:

x1 y1
x2 y2
...
xp yp

Each output line should consist of two integers separated by a space.

You can assume that at least one location on a street is consistent with the measurements.

Sample Input 1 Sample Output 1

4 2 1 1

1 1 1 2

2 2 2 1

2 2 1 2

1 1 2 1

9 N

1 1

2 2

Sample Input 2 Sample Output 2

6 0 0 2

0 0 2 0

0 1 2 1

0 2 2 2

0 0 0 2

1 0 1 2

2 0 2 2

2 E

7 N

0 1

1 0

1 2

2 1

Sample Input 3 Sample Output 3

7 10 0 1

5 0 10 0

8 5 15 5

5 10 15 10

5 0 5 10

8 5 8 10

10 0 10 10

15 5 15 10

10 N

5 5

8 8

10 10

15 5

12

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2014–10–19

Problem F

There is No Alternative
Input: Standard Input
Time Limit: 3 seconds

ICPC (Isles of Coral Park City) consist of several beautiful islands.

The citizens requested construction of bridges between islands to resolve inconveniences of using
boats between islands, and they demand that all the islands should be reachable from any other
islands via one or more bridges.

The city mayor selected a number of pairs of islands, and ordered a building company to estimate
the costs to build bridges between the pairs. With this estimate, the mayor has to decide the
set of bridges to build, minimizing the total construction cost.

However, it is difficult for him to select the most cost-efficient set of bridges among those
connecting all the islands. For example, three sets of bridges connect all the islands for the
Sample Input 1. The bridges in each set are expressed by bold edges in Figure F.1.

1

2

3

4

3

3

3

3

1

2

3

4

3

3

3

3

1

2

3

4

3

3

3

3

Figure F.1. Three sets of bridges connecting all the islands for Sample Input 1

As the first step, he decided to build only those bridges which are contained in all the sets
of bridges to connect all the islands and minimize the cost. We refer to such bridges as no
alternative bridges. In Figure F.2, no alternative bridges are drawn as thick edges for the
Sample Input 1, 2 and 3.

Write a program that advises the mayor which bridges are no alternative bridges for the given
input.

Input

The input consists of a single test case.

13

1

2

3

4

3

3

3

3

1

2

3

4

3

3

3

5

1

2

3

4

3

3

3

1

Figure F.2. No alternative bridges for Sample Input 1, 2 and 3

N M
S1 D1 C1
...
SM DM CM

The first line contains two positive integers N and M . N represents the number of islands and
each island is identified by an integer 1 through N . M represents the number of the pairs of
islands between which a bridge may be built.

Each line of the next M lines contains three integers Si, Di and Ci (1 ≤ i ≤M) which represent
that it will cost Ci to build the bridge between islands Si and Di. You may assume 3 ≤ N ≤ 500,
N − 1 ≤M ≤ min(50000, N(N − 1)/2), 1 ≤ Si < Di ≤ N , and 1 ≤ Ci ≤ 10000. No two bridges
connect the same pair of two islands, that is, if i 6= j and Si = Sj , then Di 6= Dj . If all the
candidate bridges are built, all the islands are reachable from any other islands via one or more
bridges.

Output

Output two integers, which mean the number of no alternative bridges and the sum of their
construction cost, separated by a space.

Sample Input 1 Sample Output 1

4 4

1 2 3

1 3 3

2 3 3

2 4 3

1 3

14

Sample Input 2 Sample Output 2

4 4

1 2 3

1 3 5

2 3 3

2 4 3

3 9

Sample Input 3 Sample Output 3

4 4

1 2 3

1 3 1

2 3 3

2 4 3

2 4

Sample Input 4 Sample Output 4

3 3

1 2 1

2 3 1

1 3 1

0 0

15

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2014–10–19

Problem G

Flipping Parentheses
Input: Standard Input
Time Limit: 5 seconds

A string consisting only of parentheses ‘(’ and ‘)’ is called balanced if it is one of the following.

• A string “()” is balanced.

• Concatenation of two balanced strings are balanced.

• When a string s is balanced, so is the concatenation of three strings “(”, s, and “)” in this
order.

Note that the condition is stronger than merely the numbers of ‘(’ and ‘)’ are equal. For instance,
“())(()” is not balanced.

Your task is to keep a string in a balanced state, under a severe condition in which a cosmic ray
may flip the direction of parentheses.

You are initially given a balanced string. Each time the direction of a single parenthesis is
flipped, your program is notified the position of the changed character in the string. Then,
calculate and output the leftmost position that, if the parenthesis there is flipped, the whole
string gets back to the balanced state. After the string is balanced by changing the parenthesis
indicated by your program, next cosmic ray flips another parenthesis, and the steps are repeated
several times.

Input

The input consists of a single test case formatted as follows.

N Q
s
q1
...
qQ

The first line consists of two integers N and Q (2 ≤ N ≤ 300000, 1 ≤ Q ≤ 150000). The second
line is a string s of balanced parentheses with length N . Each of the following Q lines is an
integer qi (1 ≤ qi ≤ N) that indicates that the direction of the qi-th parenthesis is flipped.

16

Output

For each event qi, output the position of the leftmost parenthesis you need to flip in order to
get back to the balanced state.

Note that each input flipping event qi is applied to the string after the previous flip qi−1 and its
fix.

Sample Input 1 Sample Output 1

6 3

((()))

4

3

1

2

2

1

Sample Input 2 Sample Output 2

20 9

()((((()))))()()()()

15

20

13

5

3

10

3

17

18

2

20

8

5

3

2

2

3

18

In the first sample, the initial state is “((()))”. The 4th parenthesis is flipped and the string
becomes “(((())”. Then, to keep the balance you should flip the 2nd parenthesis and get “()(())”.
The next flip of the 3rd parenthesis is applied to the last state and yields “())())”. To rebalance
it, you have to change the 2nd parenthesis again yielding “(()())”.

17

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2014–10–19

Problem H

Cornering at Poles
Input: Standard Input
Time Limit: 3 seconds

You are invited to a robot contest. In the contest, you are given a disc-shaped robot that is
placed on a flat field. A set of poles are standing on the ground. The robot can move in all
directions, but must avoid the poles. However, the robot can make turns around the poles
touching them.

Your mission is to find the shortest path of the robot to reach the given goal position. The
length of the path is defined by the moving distance of the center of the robot. Figure H.1
shows the shortest path for a sample layout. In this figure, a red line connecting a pole pair
means that the distance between the poles is shorter than the diameter of the robot and the
robot cannot go through between them.

Start Goal

Poles

Poles

Figure H.1. The shortest path for a sample layout

Input

The input consists of a single test case.

N Gx Gy

x1 y1
...
xN yN

18

The first line contains three integers. N represents the number of the poles (1 ≤ N ≤ 8).
(Gx, Gy) represents the goal position. The robot starts with its center at (0, 0), and the robot
accomplishes its task when the center of the robot reaches the position (Gx, Gy). You can
assume that the starting and goal positions are not the same.

Each of the following N lines contains two integers. (xi, yi) represents the standing position
of the i-th pole. Each input coordinate of (Gx, Gy) and (xi, yi) is between −1000 and 1000,
inclusive. The radius of the robot is 100, and you can ignore the thickness of the poles. No
pole is standing within a 100.01 radius from the starting or goal positions. For the distance di,j
between the i-th and j-th poles (i 6= j), you can assume 1 ≤ di,j < 199.99 or 200.01 < di,j .

Figure H.1 shows the shortest path for Sample Input 1 below, and Figure H.2 shows the shortest
paths for the remaining Sample Inputs.

Sample 2 Sample 3 Sample 4 Sample 5

Sample 6 Sample 7

Figure H.2. The shortest paths for the sample layouts

Output

Output the length of the shortest path to reach the goal. If the robot cannot reach the goal,
output 0.0. The output should not contain an error greater than 0.0001.

19

Sample Input 1 Sample Output 1

8 900 0

40 100

70 -80

350 30

680 -20

230 230

300 400

530 130

75 -275

1210.99416

Sample Input 2 Sample Output 2

1 0 200

120 0

200.0

Sample Input 3 Sample Output 3

3 110 110

0 110

110 0

200 10

476.95048

Sample Input 4 Sample Output 4

4 0 200

90 90

-90 90

-90 -90

90 -90

0.0

Sample Input 5 Sample Output 5

2 0 -210

20 -105

-5 -105

325.81116

Sample Input 6 Sample Output 6

8 680 -50

80 80

80 -100

480 -120

-80 -110

240 -90

-80 100

-270 100

-420 -20

1223.53071

20

Sample Input 7 Sample Output 7

2 -1 600

-99 300

-100 540

600.01216

21

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2014–10–19

Problem I

Sweet War
Input: Standard Input
Time Limit: 1 second

There are two countries, Imperial Cacao and Principality of Cocoa. Two girls, Alice (the Empress
of Cacao) and Brianna (the Princess of Cocoa) are friends and both of them love chocolate very
much.

One day, Alice found a transparent tube filled with chocolate balls (Figure I.1). The tube has
only one opening at its top end. The tube is narrow, and the chocolate balls are put in a line.
Chocolate balls are identified by integers 1, 2, . . ., N where N is the number of chocolate balls.
Chocolate ball 1 is at the top and is next to the opening of the tube. Chocolate ball 2 is next
to chocolate ball 1, . . ., and chocolate ball N is at the bottom end of the tube. The chocolate
balls can be only taken out from the opening, and therefore the chocolate balls must be taken
out in the increasing order of their numbers.

Figure I.1. Transparent tube filled with chocolate balls

Alice visited Brianna to share the tube and eat the chocolate balls together. They looked at
the chocolate balls carefully, and estimated that the nutrition value and the deliciousness of
chocolate ball i are ri and si, respectively. Here, each of the girls wants to maximize the sum of
the deliciousness of chocolate balls that she would eat. They are sufficiently wise to resolve this
conflict peacefully, so they have decided to play a game, and eat the chocolate balls according
to the rule of the game as follows:

1. Alice and Brianna have initial energy levels, denoted by nonnegative integers A and B,
respectively.

2. Alice and Brianna takes one of the following two actions in turn:

• Pass: she does not eat any chocolate balls. She gets a little hungry – specifically, her
energy level is decreased by 1. She cannot pass when her energy level is 0.

22

• Eat: she eats the topmost chocolate ball – let this chocolate ball i (that is, the
chocolate ball with the smallest number at that time). Her energy level is increased
by ri, the nutrition value of chocolate ball i (and NOT decreased by 1). Of course,
chocolate ball i is removed from the tube.

3. Alice takes her turn first.

4. The game ends when all chocolate balls are eaten.

You are a member of the staff serving for Empress Alice. Your task is to calculate the sums of
deliciousness that each of Alice and Brianna can gain, when both of them play optimally.

Input

The input consists of a single test case. The test case is formatted as follows.

N A B
r1 s1
r2 s2
...
rN sN

The first line contains three integers, N , A and B. N represents the number of chocolate balls.
A and B represent the initial energy levels of Alice and Brianna, respectively. The following N
lines describe the chocolate balls in the tube. The chocolate balls are numbered from 1 to N ,
and each of the lines contains two integers, ri and si for 1 ≤ i ≤ N . ri and si represent the
nutrition value and the deliciousness of chocolate ball i, respectively. The input satisfies

• 1 ≤ N ≤ 150,

• 0 ≤ A,B, ri ≤ 109,

• 0 ≤ si, and

•
N∑
i=1

si ≤ 150.

Output

Output two integers that represent the total deliciousness that Alice and Brianna can obtain
when they play optimally.

Sample Input 1 Sample Output 1

2 5 4

5 7

4 8

8 7

23

Sample Input 2 Sample Output 2

3 50 1

49 1

0 10

0 1

10 2

Sample Input 3 Sample Output 3

4 3 2

1 5

2 46

92 40

1 31

77 45

Sample Input 4 Sample Output 4

5 2 5

56 2

22 73

2 2

1 55

14 18

57 93

24

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2014–10–19

Problem J

Exhibition
Input: Standard Input
Time Limit: 10 seconds

The city government is planning an exhibition and collecting industrial products. There are n
candidates of industrial products for the exhibition, and the city government decided to choose
k of them. They want to minimize the total price of the k products. However, other criteria
such as their sizes and weights should be also taken into account. To address this issue, the city
government decided to use the following strategy: The i-th product has three parameters, price,
size, and weight, denoted by xi, yi, and zi, respectively. Then, the city government chooses k
items i1, . . . , ik (1 ≤ ij ≤ n) that minimizes the evaluation measure

e =
(k∑
j=1

xij

)(k∑
j=1

yij

)(k∑
j=1

zij

)
,

which incorporates the prices, the sizes, and the weights of products. If there are two or more
choices that minimize e, the government chooses one of them uniformly at random.

You are working for the company that makes the product 1. The company has decided to cut the
price, reduce the size, and/or reduce the weight of the product so that the city government may
choose the product of your company, that is, to make the probability of choosing the product
positive. We have three parameters A, B, and C. If we want to reduce the price, size, and
weight to (1 − α)x1, (1 − β)y1, and (1 − γ)z1 (0 ≤ α, β, γ ≤ 1), respectively, then we have to
invest αA + βB + γC million yen. We note that the resulting price, size, and weight do not
have to be integers. Your task is to compute the minimum investment required to make the city
government possibly choose the product of your company. You may assume that employees of
all the other companies are too lazy to make such an effort.

Input

The input consists of a single test case with the following format.

n k A B C
x1 y1 z1
x2 y2 z2
...
xn yn zn

The first line contains five integers. The integer n (1 ≤ n ≤ 50) is the number of industrial
products, and the integer k (1 ≤ k ≤ n) is the number of products that will be chosen by the

25

city government. The integers A, B, C (1 ≤ A,B,C ≤ 100) are the parameters that determine
the cost of changing the price, the size, and the weight, respectively, of the product 1.

Each of the following n lines contains three integers, xi, yi, and zi (1 ≤ xi, yi, zi ≤ 100), which
are the price, the size, and the weight, respectively, of the i-th product.

Output

Output the minimum cost (in million yen) in order to make the city government possibly choose
the product of your company. The output should not contain an absolute error greater than
10−4.

Sample Input 1 Sample Output 1

6 5 1 2 3

5 5 5

1 5 5

2 5 4

3 5 3

4 5 2

5 5 1

0.631579

Sample Input 2 Sample Output 2

6 1 1 2 3

10 20 30

1 2 3

2 4 6

3 6 9

4 8 12

5 10 15

0.999000

26

ACM International Collegiate Programming Contest
Asia Regional Contest, Tokyo, 2014–10–19

Problem K

L∞ Jumps
Input: Standard Input
Time Limit: 3 seconds

Given two points (p, q) and (p′, q′) in the XY-plane, the L∞ distance between them is defined
as max(|p − p′|, |q − q′|). In this problem, you are given four integers n, d, s, t. Suppose that
you are initially standing at point (0, 0) and you need to move to point (s, t). For this purpose,
you perform jumps exactly n times. In each jump, you must move exactly d in the L∞ distance
measure. In addition, the point you reach by a jump must be a lattice point in the XY-plane.
That is, when you are standing at point (p, q), you can move to a new point (p′, q′) by a single
jump if p′ and q′ are integers and max(|p− p′|, |q − q′|) = d holds.

Note that you cannot stop jumping even if you reach the destination point (s, t) before you
perform the jumps n times.

To make the problem more interesting, suppose that some cost occurs for each jump. You are
given 2n additional integers x1, y1, x2, y2, . . . , xn, yn such that max(|xi|, |yi|) = d holds for each
1 ≤ i ≤ n. The cost of the i-th (1-indexed) jump is defined as follows: Let (p, q) be a point at
which you are standing before the i-th jump. Consider a set of lattice points that you can jump
to. Note that this set consists of all the lattice points on the edge of a certain square. We assign
integer 1 to point (p+ xi, q + yi). Then, we assign integers 2, 3, . . . , 8d to the remaining points
in the set in the counter-clockwise order. (Here, assume that the right direction is positive in
the x-axis and the upper direction is positive in the y-axis.) These integers represent the costs
when you perform a jump to these points.

For example, Figure K.1 illustrates the points reachable by your i-th jump when d = 2 and you
are at (3, 1). The numbers represent the costs for xi = −1 and yi = −2.

Compute and output the minimum required sum of the costs for the objective.

Input

The input consists of a single test case.

n d s t
x1 y1
x2 y2
...
xn yn

27

1 2 3 4

5

6

7

89101112

13

14

15

16

x

y

O

1

2

3

2 3 4

-1

Figure K.1. Reachable points and their costs

The first line contains four integers. n (1 ≤ n ≤ 40) is the number of jumps to perform. d
(1 ≤ d ≤ 1010) is the L∞ distance which you must move by a single jump. s and t (|s|, |t| ≤ nd)
are the x and y coordinates of the destination point. It is guaranteed that there is at least one
way to reach the destination point by performing n jumps.

Each of the following n lines contains two integers, xi and yi with max(|xi|, |yi|) = d.

Output

Output the minimum required cost to reach the destination point.

Sample Input 1 Sample Output 1

3 2 4 0

2 2

-2 -2

-2 2

15

Sample Input 2 Sample Output 2

4 1 2 -2

1 -1

1 0

1 1

-1 0

10

28

Sample Input 3 Sample Output 3

6 5 0 2

5 2

-5 2

5 0

-3 5

-5 4

5 5

24

Sample Input 4 Sample Output 4

5 91 -218 -351

91 91

91 91

91 91

91 91

91 91

1958

Sample Input 5 Sample Output 5

1 10000000000 -10000000000 -2527532346

8198855077 10000000000

30726387424

29

